Model-based image processing approaches for automated person identification and authentication in online banking

  • Andreas Pointner  ,
  • Oliver Krauss  ,
  • Georg Freilinger  
  • Daniel Strieder  
  • Gerald Zwettler  
  • a,b,eResearch Group for Advanced Information Systems and Technology (AIST), Research and Development
    Department, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, AUSTRIA
  • c,dCredi2 GmbH, Schottenfeldgasse 85/2, 1070 Wien, AUSTRIA
  • School of Informatics, Communications and Media, University of Applied Sciences Upper Austria, Softwarepark 11,4232 Hagenberg, AUSTRIA
Cite as
Pointner A., Krauss O., Freilinger G., Strieder D., Zwettler G. (2018). Model-based image processing approaches for automated person identification and authentication in online banking. Proceedings of the 30th European Modeling & Simulation Symposium (EMSS 2018), pp. 36-45. DOI: https://doi.org/10.46354/i3m.2018.emss.006

Abstract

This research work covers the necessary image processing workflow to facilitate online person identification for financial authentication, to be carried out in a fully automated way. This brings the advantage of fewer errors due to human failures. Moreover, it reduces the cost of a single identification by quite a significant factor. The relevant authentication and validation steps are modelled in BPMN. Validation and comparison of the person visible in the video stream is achieved utilizing a hybrid face recognition approach combined with OCR checking and model-derived individual instructions. To ensure authenticity of the identification card, security features like color-holograms are modelled for each version and supported country. The interconnection of the process sequence, which is individually and dynamically derived from the BPMN together with adaptive paradigms of human-computer-interaction, allow for a beyond the current state-of-the-art level of manipulation prevention and of user assistance. The results show that the process of person identification and authentication can be automated when legal aspects are clarified, thus allowing for a state-of the-art of precision on face recognition and hologram checking, at a competitive level with human staff.

References

  1. Adamczyk P., Smith P.H., Johnson R.E., Hafiz M., 2011. REST and Web Services: In Theory and In
    Practice. In: REST: From Research to Practice, E. Wilde and C. Pautasso, Eds. Springer New York, 35–57. Available from: https://www.researchgate.net/publication/2652364  89_REST_and_Web_Services_In_Theory_and_in _Practice [accessed 26th March 2018].
  2. Ahonen T., Hadid A., Pietikainen M., 2004. Face Recognition with Local Binary Patterns. In: T.
    Pajdla and Matas J. (Eds.): ECCV, Lecture Notes in Computer Science LNCS 3021:469-481,
    Springer Berlin Heidelberg (Germany).
  3. Ballard D.H., 1981. Generalizing the Hough Transform to Detect Arbitrary Shapes. In Pattern Recognition, 13(2):111-122.
  4. Bay H., Ess A., Tuytelaars T., Van Gool L., 2008. SURF – Speeded Up Robust Features. In
    Computer Vision and Image Understanding (CVIU), 110(3):346—359.
  5. Bevilacqua V., Caprioli M., Cortellino M., Giannini M., Mastronardi G., Santarcangelo V., 2010.
    ACCURACY OF 3D FACE RECOGNITION FRAMEWORKS. In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, vol. 38, part 7B.
  6. Bundesfinanzministerium, 2017. Gesetz zur Umsetzung  er Vierten EU-Geldwäscherichtlinie, zur
    Ausführung der EU-Geldtransferverordnung und zur Neuorganisation der Zentralstelle für
    Finanztransaktionsuntersuchungen. Translation: Law for implementation of the fourth EUMoneylaundering- Guideline for Execution of the EU-Moneytransfer-Ordinance and for
    reorganization of the central department for financial-transaction-investigation Available from
    https://www.bundesfinanzministerium.de/Content/ DE/Downloads/Gesetze/2017-06-24-G-z-
    Umsetzung-Vierte-Geldwaescherichtlinie.pdf [accessed 10th April 2018]
  7. Burage-Lefebvre C., Cotmellec S., Lebrun D., Ozkul, C., 2000. Application of wavelet transform to hologram analysis: three-dimensional location of particles. In: Optics and Lasers in
    Engineering, 33(6):409– 421.
  8. Brunelli R., Poggio T., 1992. Face Recognition through Geometrical Features. In: Proc. of the European Conference on Computer Vision (ECCV):792-800. Camunda, 2018. Camunda BPM Features. Available from https://camunda.com/enterprise/ [accessed 26th March 2018].
  9. Cootes, T.F., Edwards, G.J., Taylor, C.J., 1998. Active Appearance Models. In Proceedings of the 5th European Conference on Computer Vision, 484- 498. June 2-6, Freiburg (Germany).
  10. Gutierrez F., 2014. Introducing Spring Framework: A Primer. Apress Berkely, (USA).
  11. Hartl A., Grubert J., Schmalstieg D., Reitmayr G., 2013. Mobile Interactive Hologram Verification. In: Proc. of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR, 75-82.
  12. Hartl A., Arth C., Schmalstieg D., 2014. AR-Based Hologram Detection on Security Documents Using a Mobile Phone. In: Proc. of the 10th International Symposium ISVC 2014 on Advances
    in Visual Computing, Las Vegas (USA), 335-346.
  13. CAO, 2018. Machine readable Travel Documents. Available from https://www.icao.int/publications/pages/publicatio n.aspx?docnum=9303 [accessed 10th April 2018]
  14. IDnow, 2018a. IDnow Technology. Available from https://www.idnow.de/technologie [accessed 26th March 2018].
  15. IDnow, 2018b. IDnow Video-Ident. Available from https://www.idnow.de/produkte/videoidentifizierung [accessed 26th March 2018].
  16. Jähne B., 2012. Digitale Bildverarbeitung und Bildgewinnung. Berlin, Springer. Available from
    http://www.springer.com/de/book/9783642049514 [accessed 26th March 2018].
  17. Janucki J., Owsik J., 2003. A Wiener filter based correlation method intended to evaluate effectiveness of holographic security devices. In: Optics Communications 218:221-228.
  18. Kanade T., 1973. Picture Processing System by Computer Complex and Recognition of Human
    Faces, Thesis (PhD.) Kyoto University, Japan.
  19. Lowe D.G., 2004. Distinctive Image Features from Scale-Invariant Keypoints. In: International
    Journal of Computer Vision 60(2):91-110, Kluwer Academic Publishers Hingham, MA, USA.
  20. Meier A., Stormer H., 2012. eBusiness & eCommerce Management der digitalen Wertschöpfungskette. Springer.
  21. Microsoft 2018. Microsoft Azure – Cognitive Services. Available from https://azure.microsoft.com/enus/ services/cognitive-services/ [accessed 26th March 2018].
  22. OMG, 2011. Business Process Model And Notation Specification Version 2.0. Available from
    https://www.omg.org/spec/BPMN/2.0 [accessed 26th June 2018]
  23. OpenCV, 2018a. OpenCV - Open Source Computer Vision Library. Available from
    https://opencv.org/about.html [accessed 26th March 2018].
  24. OpenCV, 2018b. OpenCV - Template Matching. Available from https://docs.opencv.org/2.4.13/doc/tutorials/imgpr oc/histograms/template_matching/template_match ing.html [accessed 26th March 2018].
  25. OpenCV, 2018c. OpenCV – Face Recognition with OpenCV. Available from: https://docs.opencv.org/2.4/modules/contrib/doc/fa cerec/facerec_tutorial.html [accessed 26th March 2018].
  26. OpenCV, 2018d. OpenCV – Scene Text Recognition. https://docs.opencv.org/3.0-
    beta/modules/text/doc/ocr.html Available from: [accessed 26th March 2018].
  27. Pointner A., 2017. Bildverarbeitungsmethoden zur Personenidentifikation. Thesis (BSc.). University of Applied Sciences Upper Austria.
  28. Pramila A., Keskinarkaus A., Rahtu E., Seppänen T., 2011. Watermark Recovery from a Dual Layer Hologram with a Digital Camera. In: Heyden A., Kahl F. (eds) Image Analysis. SCIA 2011. Lecture Notes in Computer Science 6688. Springer, Berlin, Heidelberg (Germany).
  29. Rublee E., Rabaud V., Konolige K., Bradski G.A., 2011. ORB – An efficient alternative to SIFT and
    SURF. In IEEE International Conference on Computer Vision ICCV 2011, 2564-2571.
  30. Smith R., 2007. An Overview of the Tesseract OCR Engine. Available from
    https://github.com/tesseractocr/ docs/blob/master/tesseracticdar2007.pdf
    [accessed 26th March 2018].
  31. Sonka M., Hlavac V., Boyle R., 2007, Image Processing, Analysis, and Machine Vision.
    Thomson-Engineering, ISBN 049508252X. Turk M., Pentland A., 1991. Eigenfaces for recognition. In: Journal of Cognitive Neuroscience 3:71-86.
  32. Vuforia, 2018a. Vuforia in Unity. Available from https://www.vuforia.com/ [accessed 26th March
    2018].
  33. Vuforia, 2018b. Vuforia - Optimizing Target Detection and Tracking Stability. Available from https://library.vuforia.com/articles/Solution/Optim izing-Target-Detection-and-Tracking-
    Stability.html#natural [accessed 26th March 2018].
  34. Zustellgesetz, 2008. §17 Zustellung. Available from https://www.jusline.at/gesetz/zustg/paragraf/17 [accessed 26th March 2018].
  35. Meyer F., 1992. Color image segmentation. In: Proc. of the International Conference on Image Processing and its Applications.