Surrogate-assisted high-dimensional optimization on microscopic traffic simulators

  • Bernhard Werth  ,
  • Erik Pitzer  ,
  • Gerald Ostermayer  , 
  • Michael Affenzeller  
  • a,b,dHeuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper Austria, Hagenberg
  • a,d Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria
  • c Research Group Networks and Mobility, University of Applied Sciences Upper Austria, Hagenberg 
Cite as
Werth B., Pitzer E., Ostermayer G., Affenzeller M. (2018). Surrogate-assisted high-dimensional optimization on microscopic traffic simulators. Proceedings of the 30th European Modeling & Simulation Symposium (EMSS 2018), pp. 46-53. DOI: https://doi.org/10.46354/i3m.2018.emss.007

Abstract

Microscopic traffic simulation is able to capture many details of a traffic system, which makes it inherently interesting for simulation-based optimization. However, the considerable computational effort required for a single simulation run limits the use of standard heuristic optimization techniques and encourages the use of surrogate models to facilitate the search for an optimal solution. In this work, a grey-box surrogate model for microscopic traffic simulations is presented which allows the optimization of high-dimensional traffic optimization problems without relying on geographic or simulation-specific knowledge.

References

  1. Affenzeller, M., & Wagner, S. (2005). Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In Adaptive and Natural Computing Algorithms (pp. 218-221). Springer, Vienna.
  2. Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The traveling salesman problem: a computational study. Princeton university press.
  3. Backfrieder, C., Ostermayer, G., & Mecklenbräuker, C. (2015). TraffSim—A traffic simulator for
    investigations of congestion minimization through dynamic vehicle rerouting. Int. J. Simul. Syst., Sci. Technol., 15(4), 38-47.
  4. Bajer, L., Pitra, Z., & Holeňa, M. (2015, July). Benchmarking gaussian processes and random
    forests surrogate models on the BBOB noiseless testbed. In Proceedings of the Companion
    Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation (pp. 1143- 1150). ACM.
  5. Beyer, H. G., & Schwefel, H. P. (2002). Evolution strategies–A comprehensive introduction. Natural computing, 1(1), 3-52.
  6. Chiappone, S., Giuffrè, O., Granà, A., Mauro, R., & Sferlazza, A. (2016). Traffic simulation models
    calibration using speed–density relationship: an automated procedure based on genetic algorithm. Expert systems with applications, 44, 147-155.
  7. Ciuffo, B., Punzo, V., & Torrieri, V. (2008). Comparison of simulation-based and model-based calibrations of traffic-flow microsimulation models. Transportation Research Record: Journal of the Transportation Research Board, (2088), 36-44.
  8. Cobos, C., Daza, C., Martínez, C., Mendoza, M., Gaviria, C., Arteaga, C., & Paz, A. (2016, November). Calibration of Microscopic Traffic Flow Simulation Models Using a Memetic Algorithm with Solis and Wets Local Search Chaining (MASW- Chains). In Ibero-American Conference on Artificial Intelligence (pp. 365-375). Springer, Cham.
  9. Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on (pp. 39-43). IEEE.
  10. Geroliminis, N., & Daganzo, C. F. (2007,). Macroscopic modeling of traffic in cities. In TRB 86th annual meeting (No. 07-0413)
  11. Gloyer, F., & McMillan, C. (1986). The General Employee Scheduling Problem: an Integration of
    MS and AI. Computers & operations research, 13, 563-573.
  12. Gunst, R. F. (1996). Response surface methodology: process and product optimization using designed experiments.
  13. Harary, F., Norman, R. Z., (1960). Some properties of line digraphs. Rendiconti del Circolo Matematico di Palermo, 9(2), 161-168.
  14. Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Communications Surveys & Tutorials, 11(4).
  15. Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
  16. Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive blackbox functions. Journal of Global optimization, 13(4), 455-492.
  17. Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Introduction to NP-Completeness of knapsack
    problems. In Knapsack problems (pp. 483-493). Springer, Berlin, Heidelberg.
  18. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
  19. Ma, T., & Abdulhai, B. (2002). Genetic algorithm-based optimization approach and generic tool for calibrating traffic microscopic simulation parameters. Transportation Research Record:
    Journal of the Transportation Research Board, (1800), 6-15.
  20. Miller, J. A., Peng, H., & Bowman, C. N. (2017, December). Advanced tutorial on microscopic
    discrete-event traffic simulation. In Simulation Conference (WSC), 2017 Winter (pp. 705-719).
    IEEE.
  21. Moridpour, S., Sarvi, M., Rose, G., & Mazloumi, E. (2012). Lane-changing decision model for heavy vehicle drivers. Journal of Intelligent Transportation Systems, 16(1), 24-35.
  22. Otković, I. I., Tollazzi, T., & Šraml, M. (2013). Calibration of microsimulation traffic model using
    neural network approach. Expert systems with applications, 40(15), 5965-5974.
  23. Qin, Y., Dong, H., Zhang, Q., & Yang, Y. (2016, November). Parameter Calibration Method of
    Microscopic Traffic Flow Simulation Models based on Orthogonal Genetic Algorithm. In DMS (pp. 55- 60).
  24. Samoili, S., Bhaskar, A., Hai Pham, M., & Dumont, A. G. (2011). Considering weather in simulation traffic.
  25. Sánchez-Medina, J. J., Galán-Moreno, M. J., & Rubio- Royo, E. (2010). Traffic signal optimization in “La Almozara” district in Saragossa under congestion conditions, using genetic algorithms, traffic microsimulation, and cluster computing. IEEE Transactions on Intelligent Transportation Systems, 11(1), 132-141.
  26. Shan, S., & Wang, G. G. (2010). Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Structural and Multidisciplinary Optimization, 41(2), 219-241.
  27. Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and applications. Society for Industrial and Applied Mathematics.
  28. Werth, B., Pitzer, E., & Affenzeller, M. (2017, February). A Fair Performance Comparison of Different Surrogate Optimization Strategies. In International Conference on Computer Aided Systems Theory (pp. 408-415). Springer, Cham.
  29. Wiering, M. A., Veenen, J. V., Vreeken, J., & Koopman A. (2004). Intelligent traffic light control.
  30. Yang, Q., & Koutsopoulos, H. N. (1996). A microscopic traffic simulator for evaluation of dynamic traffic management systems. Transportation Research- Part C Emerging Technologies, 4(3), 113-130.
  31. Zhou, Z., Ong, Y. S., Nair, P. B., Keane, A. J., & Lum, K. Y. (2007). Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Transactions On Systems, Man and Cybernetics-Part C, 37(1), 66-76.