A lumped parameter model of airway/lung mechanics

  • Silvia Marconi  ,
  • Claudio De Lazzar  
  • a, bInstitute of Clinical Physiology, National Research Council, Rome
  • bNational Institute for Cardiovascular Research, Bologna, Italy
Cite as
Marconi S., De Lazzari C. (2018). A lumped parameter model of airway/lung mechanics. Proceedings of the 30t European Modeling & Simulation Symposium (EMSS 2018), pp. 54-58. DOI: https://doi.org/10.46354/i3m.2018.emss.008

Abstract

In this work we present a nonlinear lumped parameter model of the airway/lung mechanics. The model is able to reproduce the time evolution of the fundamental variables (pressure, flow and volume) within each compartment of the respiratory system during normal breathing. A particular attention is given to the pleural pressure that is the driving force of the system. Our purpose is to build a tool for a qualitative description of the lung/airway dynamics that is able to reproduce the physiological behavior of the main system variables. The aim of this work is to develop a model of the respiratory system and successively insert it into our numerical lumped parameter model of the cardiovascular system. In this way it will be possible to study the interactions between the cardiovascular, the respiratory system and the most used mechanical circulatory and ventilatory assist devices in terms of hemodynamic and energetic variables.

References

  1. Athanasiades A., Ghorbel F., Clark J.W. Jr., Niranjan S.C., Olansen J., Zwischenberger J.B. and Bidani A., 2000. Energy Analysis of a Nonlinear Model of the Normal Human Lung. Journal of Biological Systems, 8 (2), 115–139.
  2. Bai J., Hongli L., Zhang J., Zhao B. and Zhou X., 1998. Optimization and mechanism of step-leap
    respiration exercise in treating of cor pulmonale. Computers in Biology and Medicine, 28, 289–307.
  3. Bates J.H.T., 2009. Lung mechanics: an inverse modeling approach. Cambridge University Press.
  4. Bersani A.M., Bersani E. and De Lazzari C., 2017. Interaction Between the Respiratory and
    Cardiovascular System: a Simplified 0-D Mathematical Model. In: De Lazzari C. and Pirckhalava M., eds. Cardiovascular and Pulmonary Artificial Organs: Educational Training Simulators. CNR Edizioni, 87–105.
  5. Capoccia M., Marconi S., Singh S.A., Pisanelli D. and De Lazzari C., 2018. Simulation as a Preoperative Planning Approach in Advanced Heart Failure Patients. A Retrospective Clinical Analysis. BioMedical Engineering OnLine, 17, 52.
  6. De Lazzari C., Stalteri D., 2011. CARDIOSIM© Cardiovascular Software Simulator National
    Research Council. Available from: http://cardiosim.dsb.cnr.it/Default.aspx.
  7. De Lazzari C, D’Ambrosi A., Tufano F., Fresiello L., Garante M., Sergiacomi R., Stagnitti F., Caldarera, C.M., Alessandri N., 2010. Cardiac resynchronization therapy: could a numerical
    simulator be a useful tool in order to predict the response of the biventricular pacemaker synchronization? European Review for Medical and Pharmacological Science, 14 (11), 969–978.
  8. De Lazzari C., Neglia D., Ferrari G., Bernini F., Micalizzi M., L’Abbate A., Trivella M.G., 2009.
    Computer simulation of coronary flow waveforms during caval occlusion. Methods of information in medicine, 48 (2), 113-122.
  9. De Lazzari C., Darowski M., Ferrari G., Pisanelli D.M., Tosti G., 2006. Modelling in the study of interaction of Hemopump device and artificial ventilation. Computers in Biology and Medicine, 36 (11),1235–1251.
  10. De Lazzari C., Darowski M., Ferrari G., Clemente F., Guaragno M., 2001. Ventricular energetics during mechanical ventilation and intraaortic balloon pumping? computer simulation. Journal of medical engineering & technology, 25 (3), 103-111.
  11. De Lazzari C., Darowski M., Ferrari G., Clemente F., 1998. The influence of left ventricle assist device and ventilatory support on energy-relatedcardiovascular variables. Medical Engineering and Physics, 20 (2), 83–91.
  12. Colquitt R.B., Colquhoun D.A., Thiele R.H., 2011. In silico modelling of physiologic systems. Best
    Practice & Research Clinical Anaesthesiology, 25, 499–510.
  13. Formaggia L., Quarteroni A. and Veneziani A., 2009. Cardiovascular Mathematics. Modeling and
    simulation of the circulatory system. Vol. 1.Springer-Verlag, Berlin, Heidelberg.
  14. Golden J.F., Clark J.W. Jr. and Stevens P.M., 1973 Mathematical Modeling of Pulmonary Airway
    Dynamics. IEEE Transactions on Biomedical Engineering, BME-20 (6), 3247–3263.
  15. Hemalatha K., Suganthi L. and Manivannan M., 2010. Hybrid Cardiopulmonary Model for Analysis of Valsalva Maneuver with Radial Artery Pulse. Annals of Biomedical Engineering, 38 (10), 3151–3161.
  16. Liu C.H., Niranjan S.C., Clark J.W. Jr., San K.Y., Zwischenberger J.B. and Bidani A., 1998. Airway
    mechanics, gas exchange, and blood flow in a nonlinear model of the normal human lung. Journal of Applied Physiology, 84, 1447–1469.
  17. Lu K., Clark J.W. Jr., Ghorbel F.H., Ware D.L. and Bidani A., 2001. A human cardiopulmonary system model applied to the analysis of the Valsalva ma neuver. Americal Journal of Physiology-Heart and Circulatory Physiology, 281, H2661–H2679.
  18. Masana F.N., 2015. Respiratory System Model Based on PSPICE. International Journal of Microelectronics and Computer Science, 6 (3), 102–109.
  19. Olender M.F., Clark J.W. Jr and Stevens P.M., 1976. Analog Computer Simulation of Maximum
    Expiratory Flow Limitation. IEEE Transactions on Biomedical Engineering, BME-23 (6), 445–452.
  20. Korakianitis T., Shi Y., 2006. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Medical Engineering & Physics, 28 (7), 613–628.
  21. Rideout V.C., Snyder M.F., 1974. Computer simulation study of the cardiovascular and related
    physiological systems. Mathematics and Computers in Simulation, 16, 26–34.
  22. Shi Y., 2007. Lumped-parameter cardiovascular model with Windkessel after-load. Auckland: CellML. Available from: http://models.cellml.org/exposure/ea64608ab564e e085bef7cde3ed1731e. Accessed on 2/7/12.