Dynamic finite element modeling of metal spinning process with a stationary mandrel and a rotating tool

  • Huy Hoan Nguyen  ,
  • Henri Champliaud  ,
  • Van Ngan Lê  
  • a, b , c Mechanical Engineering Department, École de Technologie Supérieure, Montréal, Québec, Canada
Cite as
Huy Nguyen H., Champliaud H., Ngan Lê V. (2018). Dynamic finite element modeling of metal spinning process with a stationary mandrel and a rotating tool. Proceedings of the 30th0 European Modeling & Simulation Symposium (EMSS 2018), pp. 91-96. DOI: https://doi.org/10.46354/i3m.2018.emss.013

Abstract

Metal spinning process has observed significant developments in recent years mostly by using finite element analysis. However, a long time-consuming computation is reported. In this paper, a simplified dynamic finite element model is proposed, which can be 4-time faster than a conventional model. The key configuration is a circular plate, the only deformable part, which is considered static but subjected to centripetal forces due to the constant angular velocity. Accordingly, the mandrel becomes a stationary rigid body. The roller, also rigid body, is the only dynamic part. It rotates around the axis of the mandrel and presses the plate in the axial direction. With this configuration, the explicit time scheme can be performed at a larger mass scaling factor or with larger time steps without losing the accuracy of the results. Descriptions for the conventional model and the proposed model and results comparisons are fully detailed in the paper.

References

  1. Awiszus B., and Härtel S., 2011. Numerical simulation of non-circular spinning: A rotationally nonsymmetric spinning process, 5(6), 605–612.
  2. Bruhns O.T., 2003. Plates and Shells (pp. 131–148). Berlin, Heidelberg: Springer Berlin Heidelberg.
  3. Champliaud H., Feng Z., Lê N. Van, and Gholipour J., 2015. Line Heating Forming : Methodology and Application Using Kriging and Fifth Order Spline Formulations, 9(9), 1664–1669.
  4. Champliaud H., Feng Z., Provencher D., Tousignant D., and Gholipour J., 2016. Piecewise Fifth Order Spline Interpolation for Line Heating Forming Process (p. V002T02A029). ASME.
  5. Härtel S., and Laue R., 2016. An optimization approach in non-circular spinning, 229, 417–430.
  6. Inc H.W. international, 2010. Aluminium 1100-O properties.
  7. Liu C.-H., 2007. The simulation of the multi-pass and die-less spinning process, 192, 518–524.
  8. Liu, Yang H., and Li Y.Q., 2002. A study of the stress and strain distributions of first-pass conventional spinning under different roller-traces, 129(1), 326–329.
  9. Marghmaleki, Beni Y.T., Noghrehabadi A.R., Kazemi A.S., and Abadyan M., 2011. Finite element
    simulation of thermomechanical spinning process, 10, 3769–3774.
  10. Marghmaleki I.S., and Beni Y.T., 2014. Thermo- Mechanical Investigation of Spinning Process,
    39(2), 1209–1217.
  11. Mori K.-I., and Nonaka T., 2004. Simplified Three- Dimensional Finite Element Simulation of Shear Spinning Process Based on Axi-Symmetric Modeling, 45(517), 34–38.
  12. Music O., Allwood J.M., and Kawai K., 2010. A review of the mechanics of metal spinning, 210(1), 3–23.
  13. Neto D.M., Oliveira M.C., Menezes L.F., and Alve J.L., 2016. A contact smoothing method for
    arbitrary surface meshes using Nagata patches, 299, 283–315.
  14. Popov V.L., 2010. Contact Mechanics and Friction. Berlin, Heidelberg: Springer Berlin Heidelberg.
  15. Wriggers P., 2006. Computational contact mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg.
  16. Zavarise G., and Wriggers P., 1998. A segment-tosegment contact strategy, 28(4–8), 497–515.
  17. Zhan M., Yang H., Zhang J.H., Xu Y.L., and Ma F., 2007. 3D FEM analysis of influence of roller feed rate on forming force and quality of cone spinning, 187–188, 486–491.