Complex Networks of the air passenger traffic in Culiacan´s airport

  •  Olivia Sashiko Shirai Reyna  ,
  • Idalia Flores de la Mota 
  • a , b Posgrado en Ingeniería de Sistemas - Maestría en Investigación de Operaciones Facultad de Ingeniería, Edificio Bernardo Quintana 3er, Piso, Departamento de Sistemas, UNAM, Cd. Universitaria, Del. Coyoacán, C.P. 04510, México C.D.M.X.
Cite as
Sashiko Shirai Reyna O., Flores De La Mota I. (2018). Complex Networks of the air passenger traffic in Culiacan´s airport. Proceedings of the 30th European Modeling & Simulation Symposium (EMSS 2018), pp. 123-128. DOI: https://doi.org/10.46354/i3m.2018.emss.017

Abstract

Nowadays, the air passenger traffic has been increasing, becoming an excellent, viable and reachable option for many people. This causes that airports may require an efficient organization to serve both, the companies that use the facilities and the passengers. In addition, it is important to consider that the amount of information that is generated may not be easy to analyze, sometimes because the managers don´t know all the information that they have, or they don´t know how much this information an help the business or what they can do with all this data. Therefore, in this work, we perform an analysis of the information obtained from Culiacan´s airport (domestic and international passengers), using the methodology of Complex Networks and simulation to validate the forecast. Also, with the results obtained, we will seek to put forward improvements in the service of this type of facilities, and the infrastructure.

References

  1. Barabási A.-L., Albert R., 1999. Emergence of scaling in random networks. Science 286 (5439): 509-512.
  2. Boccaletti S., Latora V., Moreno Y., Chavez., Hwang D.- U., 2006. Complex networks: Structure and dynamics. Physics Reports. 424. 175-308.
  3. Bollobás B., 1998. Modern Graph Theory. Springer.
  4. Buchanan M., 2002. Nexus: Small Worlds and the Groundbreaking Science of Networks. New York, N.Y.: W.W. Norton.
  5. Caldarelli G., Catanzaro M., 2012. Networks: A Very Short Introduction. Oxford University Press,
    Oxford.
  6. Caldarelli G., Vespignani A.,2007. Large Scale Structure and Dynamics of Complex Networks: From Information Technology to Finance and Natural Science. World Scientific Publishing Co., Inc., USA.
  7. Dalgaard P., 2008. Introductory Statistics with R. Springer.
  8. Dorogovtsev S.N., 2010. Lectures on Complex Networks. Oxford University Press, Inc. New York,
    NY, USA.
  9. Kolaczyk E.D., Csárdi G., 2014. Statistical Analysis of Network Data with R. Springer, New York, USA.
  10. Lacasa L., Luque B., Ballesteros F., Luque J., Nuño J.C., 2008. From time series to complex networks: The visibility graph. PNAS. Vol. 5. No, 13. 4972-4975.
  11. Lacasa, L. et al., 2015. Network structure of multivariate time series. Sci. Rep. 5, 15508; doi:
    10.1038/srep15508.
  12. Lütkepohl H., 2005. New Introduction to Multiple Time Series Analysis. Springer.
  13. Newman M.E.J., 2010. Networks: An Introduction. Oxford University Press, Oxford.
  14. Newman M.E.J., 2003. The Structure and Function of Complex Networks. SIAM Review 45,167-256.
  15. Newman M.E.J., Barabási A.-L., Watts D.J., 2006. The Structure and Dynamics of Networks. Princeton University Press, Princeton, NJ, USA.
  16. Newman M.E.J., Peixoto T.P., 2015. Generalized Communities in Networks. Physical Review Letters 115, 08870. American Physical Society.
  17. Wei W. W. S., 2006. Time Series Analysis Univariate and Multivariate Analysis. Pearson.
  18. Zanin M., Lacasa L., Cea M., Crístobal S., 2009. A dynamical model for the air transportation network. Proceedings 23rd European Conference on Modelling and Simulation.
  19. Zanin M., Lillo F., 2013. Eur. Phys. J. Spec. Top. 215:5. doi:10.1140/epist/e2013-01711-9