Use reduced track profile and discrete simulation to calculate train travel time

  •  Jan Fikejz  ,
  • Jan Merta  
  • a, b Department of Software Technologies, FEI, University of Pardubice, Pardubice, Czech Republic
Cite as
Fikejz J., Merta J. (2018). Use reduced track profile and discrete simulation to calculate train travel time. Proceedings of the 30th European Modeling & Simulation Symposium (EMSS 2018), pp. 165-171. DOI: https://doi.org/10.46354/i3m.2018.emss.023

Abstract

This article deals about utilization of reduced track profile for dynamic calculation of train travel time. Attention is firstly aimed on the description of the location of trains in the designed model of railway network. Further attention is aimed on the design of the dynamic calculation of train travel time. This calculation utilization of computer simulation and reduced track profile as a substitute of the real track profile of substitute gradients.

References

  1. Becker, U. and J. Poliak. DemoOrt repositions trains with satellite. In: EURAILmag Business &
    Technology. 18. BLUE LINE & Bro, France, 2008,s. 216-219.
  2. Chudaček, V. and L. Lochman. Vlakový zabezpečovací systém ERTMS/ETCS. In: Vědeckotechnicky sborník ČD, č. 5/1998
  3. Dorazil, P. Základní vlastnosti kolejových obvodů bez izolovaných styků. Pardubice, 2008. Bachelor thesis. University of Pardubice. Supervisor: Milan Kunhart.
  4. Fikejz, J. and A. Kavička. Modelling and simulation of train positioning within the railway network. In: KLUMPP, Matthias. ESM'2012. The European simulation and modelling conference. Ostende: EUROSIS - ETI, 2012, s. 366 -376. ISBN 978-9077381-73-1.
  5. Fikejz, J. and A. Kavička. Utilisation of computer simulation for testing additional support for
    dispatching rail traffic. In: European Simulation and Modelling Conference, 2011. Ostende:
    EUROSIS - ETI, 2011. p. 225-231. ISBN 978-90- 77381-66-3.
  6. Fikejz, J. and J. Merta, Utilization of railway network model for dynamic calculation of train delays. In: The 26th European Modeling & Simulation Symposium. Barcelona, Spain, 2017 s. 248-254, ISBN 978-1-5108-4765-1
  7. Fikejz, J. and E. Řezanina, Utilization of computer simulation for detection non-standard situations within the new data layer of railway network model. In: The 26th European Modeling & Simulation Symposium. Bordeaux, 2014 s. 371-377, ISBN 978-88-97999-32-4
  8. Ghazel, M. Formalizing a subset of ERTMS/ETCS specifications for verification purposes.
    In:Transportation Research Part C: Emerging Technologies. Elsevier Limited, 2014, pp. 60-75
    ISSN: 0968-090X
  9. Kothuri, R. et al. Pro Oracle Spatial for Oracle database 11g. New York, NY: Distributed to the book trade worldwideby Springer-Verlag New York, c2007, xxxiv, 787 p. ISBN 15-905-9899-7.
  10. Lieskovský, A. and I. Myslivec. ETCS a AVV - poprvé společně. In: EuroŽel, Žilina, 2010
  11. Lieskovský, A. Automatické vedení vlaků Českých drah. In: Automatizace. Praha: Automatizace, 2004, roč. 10. ISSN 0005-125x.
  12. O’connor, M. L. Carrier-phase differential gps for automatic control of land vehicles, In: Dissertation Abstracts International, Volume: 59-06, Section: B, page: 2876.; 158 p. 1997, Stanford University, ISBN: 9780591909272
  13. Senesi, F. Satellite application for train control systems, In: The Test Site in Sardinia, Journal of Rail Transport Planning and Managemt. Elsevier BV, 2012, s. 73-78, ISSN:2210-9706
  14. Bandžuch, Ľubomír. Modernizácia elektrifikovanej trate v rámci V. koridoru v úseku Košice – Poprad. Žilina, 2006. Diplomová práce. ŽILINSKÁ UNIVERZITA V ŽILINE. Vedoucí práce Doc. Ing.
    Gabriela Lanáková, PhD.
  15. Diviš, Roman a Antonín Kavička. Design and development of a mesoscopic simulator specialized in investigating capacities of railway nodes. In: The 27th European Modeling and Simulation Symposium (EMSS 2015): 12th International Multidisciplinary Modeling and Simulation Multiconference (I3M 2015). 1. Rende, Italy: CALTEK S.r.l, 2015, s. 52-57. ISBN 9781510813762