Agent-based model for tumor-analysis using Python+Mesa

  • Ghazal Tashakor   ,
  • Remo Suppi  
  • aUniversitat Autònoma de Barcelona, Department Computer Architecture & Operating Systems, School of Engineering, Campus Bellaterra, Cerdanyola del Vallès, Barcelona, 08193, Spain
Cite as
Tashakor G., Suppi R. (2018). Agent-based model for tumor-analysis using Python+Mesa. Proceedings of the 30th European Modeling & Simulation Symposium (EMSS 2018), pp. 248-254. DOI: https://doi.org/10.46354/i3m.2018.emss.034

Abstract

The potential power provided and possibilities presented by computation graphs has steered most of the available modeling techniques to re-implementing, utilization and including the complex nature of System Biology (SB). To model the dynamics of cellular population, we need to study a plethora of scenarios ranging from cell  differentiation to tumor growth and etcetera. Test and verification of a model in research means running the model multiple times with different or in some cases identical parameters, to see how the model interacts and if some of the outputs would change regarding different parameters. In this paper, we will describe the development and implementation of a new agent-based model using Python. The model can be executed using a development environment (based on Mesa, and extremely simplified for convenience) with different parameters. The result is collecting large sets of data, which will allow an in-depth analysis in the microenvironment of the tumor by the means of network analysis.

References

  1. Wilensky, U., 1998. NetLogo Tumor model. Center for Connected Learning and Computer-Based
    Modeling, Northwestern University, Evanston, IL. Project Integrated Simulation & Model Environment. National Science Foundation REC-9814682 and REC-0126227
  2. Li, S., & Li, S., 2014. Cancer stem cells and tumor metastasis (Review). International Journal of Oncology, 44, 1806-1812.
  3. Weis, S. M., & Cheresh, D. A., 2011. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nature Medicine. Carmeliet, P., & Jain, R. K., 2000. Angiogenesis in cancer and other diseases. Nature.
  4. Thorne, B. C., Bailey, A. M., & Peirce, S. M., 2007. Combining experiments with multi-cell agentbased modeling to study biological tissue patterning. Briefings in Bioinformatics.
  5. Edelman, L. B., Eddy, J. A., & Price, N. D., 2010. In silico models of cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine.
  6. Soleimani, S., Shamsi, M., Ghazani, M. A., Modarres, H. P., Valente, K. P., Saghafian, M., Sanati-Nezhad,
    A., 2018. Translational models of tumor angiogenesis: A nexus of in silico and in vitro models. Biotechnology Advances.
  7. Tashakor, G., Luque, E., & Suppi, R., 2017. High Performance Computing for Tumor Propagation
    Agent-based Model.
  8. Granger, D. N., & Senchenkova, E, 2010. Inflammation and the Microcirculation. Colloquium Series on
    Integrated Systems Physiology: From Molecule to Function, 2(1), 1–87.
  9. Girvan, M., & Newman, M. E. J., 2002. Community structure in social and biological networks. Proc.
    Natl. Acad. Sci. USA, 99(12), 7821–7826.
  10. Tashakor, G., Suppi, R., 2017. HpcNetlogo. Frontend for the concurrent execution of Netlogo experiments
    using SGE HPC cluster.
  11. Cho, D.-Y., Kim, Y.-A., & Przytycka, T. M., 2012 Chapter 5: Network Biology Approach to Complex
    Diseases. PLoS Computational Biology, 8(12), e1002820.
  12. Masad, D., & Kazil, J., 2015. MESA: An Agent-Based Modeling Framework. Proceedings of the 14th
    Python in Science Conference.53–60.
  13. Xing, F., Eisele, J., Bastian, P., & Heermann, D. W., 2015. Computational complexity of agent-based multi-scale cancer modeling. Simulation Series, 47(10), 351–358.
  14. Villadsen, J., Jensen, A. S., Ettienne, M. B., Vester, S., Andersen, K. B., & Frøsig, A., 2013. Reimplementing a multi-agent system in python. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7837 LNAI, pp. 205–216).
  15. An, G. 2008. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge
    representation of acute inflammation. Theoretical Biology and Medical Modelling.
  16. Railsback, S. F., Lytinen, S. L., & Jackson, S. K., 2006. Agent-based Simulation Platforms: Review and
    Development Recommendations. Simulation, 82(9), 609–623.
  17. Bonabeau, E., 2002. Agent-based modeling: methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl. 3), 7280–7287.
  18. Norton, K.-A., McCabe Pryor, M. M., & Popel, A. S., 2015. Multiscale Modeling of Cancer. bioRxiv,
    33977.
  19. D., M., R.S., C., M., R., E.C., F., B., T., & I., R., 2011. Modeling formalisms in systems biology. AMB
    Express, 1(1), 1–14.
  20. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F, DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science.
  21. ALITALO, K., TAMMELA, T. and PETROVA, T.V. 2005. Lymphangiogenesis in development and human disease. Nature 438: 946-953.
  22. Kerbel, Robert S., (2008). Tumor angiogenesis. New England Journal of Medicine 358.19 2039-2049.
  23. Peskin, A., Kafadar, K., Santos, A., & Haemer, G. 2009. Robust Volume Calculations of Tumors of Various
    Sizes.
  24. Monga, S. P. S., Wadleigh, R., Sharma, A., Adib, H., Strader, D., Singh, G. Mishra, L. 2000. Intratumoral therapy of cisplatin/epinephrine injectable gel for palliation in patients with obstructive esophageal cancer. American Journal
    of Clinical Oncology: Cancer Clinical Trials, 23(4), 386-392
  25. Rai, A., Pradhan, P., Nagraj, J., Lohitesh, K., Chowdhury, R., & Jalan, S. 2017. Understanding cancer complexome using networks, spectral graph theory and multilayer framework. Scientific Reports, 7.