Modeling multi-core fiber-optic waveguide

  • Mikhail E. Belkin  ,
  • Vladislav Golovin  ,
  • Yuri Tyschuk  , 
  • Alexander S. Sigov  
  • aMIREA - Russian Technological University, Scientific and Technological Center “Integrated Microwave Photonics”, Moscow, Russian Federatio
  • bSevastopol State University (SevSU), Sevastopol, Russian Federation
Cite as
Belkin M.E., Golovin V., Tyschuk Y., Sigov A.S. (2018). Modeling multi-core fiber-optic waveguide. Proceedings of the 30th European Modeling & Simulation Symposium (EMSS 2018), pp. 269-273. DOI:
https://doi.org/10.46354/i3m.2018.emss.037

Abstract

In this work, a numerical and experimental investigation have been performed about the influence in the tonal noise-pressure level at the blade pass frequency of the additional components that are placed downstream a centrifugal blower in a refrigeration system of an induction cooktop. Four scenarios have been analysed by means of computational fluid dynamic software, evaluating the variation of pressure in time at the volute-tongue area and the results have been compared in a qualitative manner with the experimental acoustic measurements.

References

  1. Belkin M.E., Golovin V., Tyschuk Y., Vasil’ev M., and Sigov A.S., 2018. Computer-Aided Design of
    Microwave-Photonics-based RF Circuits and Systems. In: Xi Sung Loo, ed. RF Systems, Circuits and Components,. IntechOpen Publisher (in print).
  2. Belkin M.E., 2016. Design principles of long-term analog RF memory based on fiber-optics and microwave photonics approaches. Proceedings of IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP 2016), pp. 21-22. July 31 – November 3, Long Beach (California, USA).
  3. Effenberger F., 2016. Future Broadband Access Networks. Proceedings of the IEEE, 104 (11): pp. 2078-2081.
  4. Fini J. M., Zhu B., Taunay T. F., Yan M. F., and Abedin K. S., 2011. Crosstalk in multicore optical fibers.
    Poceedings of 37th European Conference and Exhibition on Optical Communication, pp. 1-3. November 3, Geneva (Switzerland).
  5. Koshiba M., Saitoh K., Takenaga K., and Matsuo S., 2012. Analytical expression of average powercoupling coefficients for estimating intercore crosstalk in multicore fibers. IEEE Photonics Journal, 4 (5): pp. 1987–1995.
  6. Lavigne B., Bertran-Pardo O., Bresson C., 2016. 400 Gb/s Real-Time Trials on Commercial Systems for Next Generation Networks. IEEE Journal of Lightwave Technology, 34 (2): pp. 477-483.
  7. Lee B. G., M. Kang, Lee J., 1996. Broadband Telecommunication Technology. Norwood, (MA,
    USA): Artech House.
  8. Luis R.S., Puttnam B.J., Cartaxo A.V.T., Werner K., Mendinueta J.M.D., Awaji Y., Wada N.,
    Nakanishi T., Hayashi T., and Sasaki T., 2016. Time and Modulation Frequency Dependence of Crosstalk in Homogeneous Multi-Core Fibers. Lightwave Technology, 34 (2): pp. 441–447.
  9. Saitoh K. and Matsuo S., 2016. Multicore Fiber Technology. Lightwave Technology, 34 (1): pp.
    55-66.
  10. Sakaguchi J., Puttnam B. J., Klaus W., Awaji Y., Wada N., Kanno A., Kawanishi T., Imamura K., Inaba
    H., Mukasa K., Sugizaki R., Kobayashi T., and Watanabe M., 2013. 305-Tb/s space division multiplexed transmission using homogeneous 19- core fiber. Lightwave Technology, 31 (4): pp. 554–562.