Modeling and environmental assessment of structural solutions for a singlefamily home

  • Esteban Fraile-Garcia   ,
  • Javier Ferreiro-Cabello  ,
  • M del Mar Villamil  , 
  • Emilio Jimenez Macias  
  • a  University of La Rioja (Spain), Department of Mechanical Engineering, ScoDIP Group
  • University of La Rioja (Spain), Department of Electrical Engineering, Modeling and Simulation in Science and Engineering Group
Cite as
Fraile-Garcia E., Ferreiro-Cabello J., del Mar Villamil M., Jimenez Macias E. (2018). Modeling and environmental assessment of structural solutions for a single family home. Proceedings of the 30th European Modeling & Simulation Symposium (EMSS 2018), pp. 331-335. DOI: https://doi.org/10.46354/i3m.2018.emss.046

Abstract

This article analyzes the impact of different structural solutions for single-family homes on the environment 
following a Life Cycle Analysis (LCA) methodology for different construction elements in its early stages, the product and construction phase. We have divided the construction stage into transportation and installation, according to UNE-EN 115804: 2012. The analysis was carried out using two indicators of environmental impact, the energy incorporated in MJ and the equivalent CO2 emissions. For the case study, a single-family detached house has been proposed. The study is focused on three representative items: foundation, structure and floors. Two cases have been made combining different construction elements. As a modeling tool, CYPECAD and CYPE 3D have been used together with databases that provide unit costs and environmental indicators for materials. A reflection is made on two models with structural alternatives, justifying the need to delve into multicriteria methods as an aid to decision making.

References

  1. Agutter A.J., 1995. The linguistic significance of current British slang. Thesis (PhD). Edinburgh University.
  2. Adeli, H., Sarma, K.C. (2006) “Cost optimization of structures. Fuzzy, Genetic Algorithms and Parallel
    Computing”, ED. WILEY-VCH.
  3. Amir, O. (2013) “A topology optimization procedure for reinforced concrete structures“, Computers &
    Structures, Vol. 114, Pag. 46-58.
  4. Armengou J., Aguado A., Ormazábal G. (2012) “Sistema integrado para toma de decisiones en el diseño de estructuras de hormigón”. Informes de la construcción, ISSN 0020-0883, Vol. 64, Nº. 527, págs. 391-400.
  5. BEDEC (2013) “Banco Estructurado de Datos de Elementos Constructivos”. Instituto de Tecnología de la Construcción de Cataluña (ITeC).
  6. CTE “Código Técnico de la Edificación”. Real Decreto 314/2006, de 17 de marzo, del Ministerio de Vivienda (España).
  7. CYPECAD (2012) ”CYPE Ingenieros Software para Arquitectura, Ingeniería y Construcción”. CYPE
    Ingenieros S.A.
  8. Danatzko, J.M., Sezen, H., Chen, Q. (2013)” Sustainable design and energy consumption analysis for structural components” Journal of Green Building 8 (1), pp. 120-135.
  9. EHE-08 “Instrucción de Hormigón Estructural”, Real Decreto 1247/2008, de 18 de julio, del Ministerio
    de Fomento (España).
  10. Fernandez-Ceniceros, J., Fernandez-Martinez, R., Fraile-Garcia, E., Martinez-De-Pison, F.J. (2013).“Decision support model for one-way floor slab design: A sustainable approach” Automation in Construction 35 PP. 460 – 470.
  11. Ferreiro-Cabello, J., Fraile-Garcia, E., Martinez- Camara, E., Perez-de-la-Parte, M. (2017) Sensitivity analysis of Life Cycle Assessment to select reinforced concrete structures with one-way slabs. Engineering Structures 132, pp. 586-596
  12. Ferreiro-Cabello, J., Fraile-Garcia, E., Martinez de Pison Ascacibar, E., Martinez de Pison Ascacibar, F.J. (2016) Minimizing greenhouse gas emissions and costs for structures with flat slabs. Journal of Cleaner Production, 137, pp. 922-930
  13. Ferreiro Cabello J, Fraile Garcia E, Martinez de Pison E, Jimenez Macias E. (2017) Metodologia para seleccion de alternativas estructurales en edificacion residencial empleando forjados unidireccionales. DYNA Ing e Ind.
    2015;90(3):491–502.
  14. Fraile-Garcia E, Ferreiro-Cabello J, Martinez-Camara E, Jimenez-Macias E. Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs. Engineering Structures. 2016;109:126–38.
  15. Fraile-Garcia, E., Ferreiro-Cabello, J., Martinez- Camara, E., Jimenez-Macias, E. Document Repercussion the use phase in the life cycle assessment of structures in residential buildings using one-way slabs. Journal of Cleaner
    Production 143, pp. 191-199
  16. Fraile-García E, Ferreiro-Cabello J, Sodupe-Ortega E, Sanz-Garcia A. Evaluación combinada de los impactos ambientales, económicos y sociales de soluciones estructurales para la construcción de
  17. Fraile-Garcia E, Ferreiro-Cabello J, Martinez-Camara E, Jimenez-Macias E. Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350). Environmental Impact Assessment. 2015;55:144–55.
  18. Huedo Dorda P., López Mesa B. (2013) “Revisión de herramientas de asistencia en la selección de soluciones constructivas sostenibles de edificación”. Informes de la construcción, ISSN 0020-0883, Vol. 65, Nº. 529, págs. 77-88.
  19. Kaveh, A., Abadi, A.S.M. (2010) “Cost optimization of a composite floor system using an improved
    harmony search algorithm", Journal of Constructional Steel Research, Vol. 66, Num. 5, Pag. 664-669.
  20. Kaveh, A., Ahangaran, M. (2012) “Discrete cost optimization of composite floor system using
    social harmony search model”, Applied Soft Computing, Vol. 12, Num. 1, Pag. 372-381.
  21. Klansek, U., Kravanja, S. (2006) “Cost estimation, optimization and competitiveness of different composite floor systems - Part 1: Selfmanufacturing cost estimation of composite and steel structures“, Journal of Constructional Steel Research, Vol. 62, Num. 5, Pag. 434-448.
  22. Kravanja, S., Klansek, U. (2008) “Cost optimization of composite floors”, High Performance Structures
    and Materials IV, Book Series: Wit Transactions on the Built Environment Vol. 97 Pag. 109-118.
  23. Martín Gil, D. González Valle, E. (2010) “La deformabilidad de las estructuras de hormigón en la edificación: su evolución”. Hormigón y acero, ISSN 0439-5689, Nº 256, págs. 61-69.
  24. Martinez-Martin, F.J., Gonzalez-Vidosa, F., Hospitaler, A., Yepes, V. (2012) “Multi-objective optimization design of bridge piers with hybrid heuristic algorithms”, Journal of Zhejiang University-Science A, Vol. 13, Num. 6, Pag. 420-
    432
  25. Payá, I., Yepes, V., Clemente, J.J., González, F. (2006) “Optimización heurística de pórticos de edificación de hormigón armado”, Métodos numéricos para cálculo y diseño en ingeniería: Revista Internacional, Vol. 22, Num. 3, Pag. 241-260.
  26. Sahab, M.G., Ashour, A.F., Toropov, V. (2005) “Cost optimisation of reinforced concrete flat slab buildings “ Engineering Structures, Vol. 27, Num. 3, Pag. 313-322.
  27. Senouci, A.B., Al-Ansari, M.S. (2009). “Cost optimization of composite beams using genetic algorithms”, Advances in Engineering Software, Vol. 40, Pag. 1112-1118.
  28. Sharafi, P., Hadi, M.N.S., Teh, L.H. (2012) “Heuristic Approach for Optimum Cost and Layout Design of
    3D Reinforced Concrete Frames”, Journal of Structural Engineering-ASCE, Vol. 138, Num. 7, Pag. 853-863.
  29. UNE-EN ISO 14040 (2006) “Gestión ambiental. Análisis de ciclo de vida. Principios y marco de referencia” (ISO 14040:2006).
  30. UNE-EN ISO 14044 (2006) “Gestión ambiental. Análisis de ciclo de vida. Requisitos y directrices”
    (ISO 14044:2006).
  31. UNE-EN 15804 (2012) “Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de productos básicas para productos de construcción