Fuzzy adaptation of intelligent control for solar thermal power plants

  • Esko K. Juuso  
  • a ,Control Engineering, Faculty of Technology, FI-90014 University of Oulu, Finland
Cite as
Juuso E.K. (2018). Fuzzy adaptation of intelligent control for solar thermal power plants. Proceedings of the 30th European Modeling & Simulation Symposium (EMSS 2018), pp. 343-348. DOI: https://doi.org/10.46354/i3m.2018.emss.048

Abstract

Solar power plants can collect efficiently thermal energy in varying operating conditions by using linguistic equation (LE) controllers which extend the operation to varying cloudy and even heavy cloudy conditions and handle efficiently disturbances in energy demand in a wide operating range. The new solution includes advanced temperature control, working point based supervisory control and new fuzzy adaptation systems. The smooth operation in the allowed temperature range, including difficult situations, is extended to situations where the oscillation risks are so low that the working point area can be extended to use higher temperatures to optimize the energy collection. This has already been tested at the collector field in short periods in special cases where the working point was changed manually. Temporal reasoning is used for detecting early the changes of operating conditions. The new fuzzy approach introduces an additional level where also the working point is automatically constrained.

References

  1. Ayala C.O., Roca L., Guzman J.L., Normey-Rico J.E., Berenguel M., and Yebra L., 2011. Local model predictive controller in a solar desalination plant collector field. Renewable Energy, 36, 3001–3012. doi:10.1016/j.renene.2011.03.037.
  2. Blanco M.J. and Santigosa L.R., 2017. Advances in concentrating solar thermal research and Technology. Elselvier. doi:978-0-08-100517-0.
  3. Bonilla J., 2013. Modeling of Two-phase Flow Evaporators for Parabolic-Trough Solar Thermal Power Plants. PhD thesis, University of Almería, 2013.
  4. Bonilla J., Yebra L.J., and Dormido S., 2011. A heuristic method to minimise the chattering problem in dynamic mathematical two-phase flow models. Mathematical and Computer Modelling, 54(5-6), 1549–1560.
  5. Bonilla J., Yebra L.J., Dormido S., and Zarza E., 2012. Parabolic-trough solar thermal power plant simulation scheme, multi-objective genetic algorithm calibration and validation. Solar Energy 86, 531–540. doi: 10.1016/j.solener.2011.10.025
  6. Camacho E., Berenguel M., and Rubio F.R., 1997. Adaptive Control of Solar Plants. Springer, London
  7. Camacho E.F., Berenguel M., Rubio F.R., and Martinez D., 2012. Control of Solar Energy Systems. Advances in Industrial Control. Springer, London.
  8. Camacho E.F. and A. J. Gallego A.J., 2013. Optimal operation in solar trough plants: a case study. Solar
    Energy, 95, 106–117.
  9. Camacho E., Rubio F., and Hughes F., 1992. Self-tuning control of a solar power plant with a distributed collector field. IEEE System Control Magazine, 12(2), 72–78
  10. Carmona R., 1985. Análisis, Modelado y control de un campo de colectores solares distribuidos con
    sistema de seguimiento en un eje. PhD thesis, Universidad de Sevilla.
  11. Cirre C.M., Berenguel M., Valenzuela L., and Camacho E., 2007. Feedback linearization control for a distributed solar collector field. Control engineering Practice, 15, 1533–1544. doi: 10.1016/j.conengprac.2007.03.002.
  12. Farkas I. and Vajk I., 2002. Internal model-based controller for a solar plant. Proceedings of the 15th Triennial World Congress, pp. 49-54, Barcelona, Spain, July 21-26, IFAC. http://www.ifacpapersonline. net/.
  13. Johansen T.A. and Storaa C., 2002. Energy-based control of a distributed solar collector field. Automatica, 38,
    1191–1199.
  14. Juuso E. and Lahdelma S., 2010. Intelligent scaling of features in fault diagnosis. In 7th International
    Conference on Condition Monitoring and Machinery Failure Prevention Technologies, CM 2010 - MFPT 2010, pp. 1358–1372, 22-24 June, Stratford-upon-Avon, UK, volume 2. URL www.scopus.com.
  15. Juuso E.K., 1999. Fuzzy control in process industry: The linguistic equation approach. In H.B. Verbruggen, H.J. Zimmermann, and R. Babuška (eds.), Fuzzy Algorithms for Control, International Series in Intelligent Technologies, volume 14 of International Series in Intelligent Technologies, 243–300. Kluwer, Boston. doi: 10.1007/978-94-
    011-4405-6 10.
  16. Juuso E.K., 2006. Modelling and simulation in development and tuning of intelligent controllers. Proceedings of 5th Vienna Symposium on Mathematical Modelling, February 8-10, 2006, Vienna, Austria, Argesim Report 30, 6–1 – 10. Argesin Verlag, Vienna. ISBN 3-901608-30-3.
  17. Juuso E.K., 2011. Recursive tuning of intelligent controllers of solar collector fields in changing operating conditions. Proceedings of the 18th World Congress The International Federation of Automatic Control, pp. 12282–12288. August 28 - September 2, Milano (Italy), IFAC. doi:10.3182/20110828-6-IT-1002.03621
  18. Juuso E.K., 2012. Model-based adaptation of intelligent controllers of solar collector fields. Proceedings of
    7th Vienna Symposium on Mathematical Modelling, Part 1, volume 7, pp. 979–984. February
    14-17, Vienna, Austria, IFAC. doi:10.3182/20120215-3-AT-3016.00173
  19. Juuso E.K., 2017. Intelligent control of a solar thermal power plant-adaption in varying conditions. Journal
    of Automation and Control Engineering, 5, 26–30. doi: 10.18178/joace.5.1.26-30.
  20. Juuso E.K., 2018. Intelligent trend analysis for a solar thermal energy collector field. IOP Conference
    Series: Earth and Environmental Science, 136(1), 012007. doi: 10.1088/1755-1315/136/1/012007
  21. Juuso E.K. and Valenzuela L., 2003. Adaptive intelligent control of a solar collector field. In Proceedings of Eunite 2003 - European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems, pp. 26–35. July 10-11, Oulu, Finland. Wissenschaftsverlag Mainz, Aachen
  22. Juuso E.K. and Yebra L.J., 2013a. Model-based intelligent control of a solar energy collector field. Proceedings - 8th EUROSIM Congress on Modelling and Simulation, EUROSIM 2013, pp. 513–518. 10-13 September, Cardiff, UK,.
    doi:10.1109/EUROSIM.2013.92
  23. Juuso E.K. and Yebra L.J., 2013b. Optimisation of solar energy collection with smart adaptive control.
    IECON Proceedings, pp. 7938–7943 (Industrial Electronics Conference). 10-14 November, Vienna,
    Austria. doi:10.1109/IECON.2013.6700459.
  24. Juuso E.K. and Yebra L.J., 2014. Smart adaptive control of a solar collector field. IFAC-PapersOnline, 19,
    2564–2569.
  25. Limon D., Alvarado I., Alamo T., Ruiz M., and Camacho E.F., 2008. Robust control of the distributed solar collector field ACUREX using MPC for tracking Proceedings of 17th IFAC World Congress, Seoul, Korea, July 6-11, 2008, volume 17, 958–963. IFAC. http://www.ifac-papersonline.net/.
  26. Osterholm R. and Palsson J., 2014. Dynamic modelling of a parabolic trough solar power plant. Proceedings
    of the 10th International Modelica Conference. March 10-12, Lund, Sweden.
  27. Roca L., Guzman J.L., Normey-Rico J.E., Berenguel M., and Yebra L., 2011. Filtered smith predictor with feedback linearization and constraints handling applied to a solar collector field. Solar Energy, 85, 1056–1067. doi: 10.1016/j.solener.2011.02.026
  28. Valenzuela L. and Balsa P., 1998. Series and parallel feedforward control schemes to regulate the
    operation of a solar collector field. Proceedings of the 2nd User Workshop Training and Mobility of
    Researchers Programme at Plataforma Solar de Almeria, pp. 19-24. November 10-11. Ciemat
  29. Yilmaz I.H. and Soylemez M.S., 2014. Thermomathematical modeling of parabolic trough
    collector. Energy Conversion and Management, 88, 768–784.