Bond graph approach for disturbance rejection with Derivative State Feedback

  • Joel A. Gonzalez  ,
  •  Christophe Sueur 
  • Ecole Centrale de Lille, CRIStAL UMR CNRS 9189, CS 20048 59651, Villeneuve d’Ascq Cedex France
Cite as
Gonzalez J.A., Sueur C. (2018). Bond graph approach for disturbance rejection with Derivative State Feedback. Proceedings of the 11th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2018), pp. 9-17. DOI: https://doi.org/10.46354/i3m.2018.imaaca.002

Abstract

This paper presents the application to a real Torsion-Bar system of Disturbance Rejection by Derivative State Feedback using an Unknown Input Observer. Finite and infinite structures of the model are analysed with a structural approach directly on the bond graph model and thus properties of the controlled system as well as the observer are structurally highlighted. The effectiveness of the proposed method is assessed with actual tests on the Torsion-Bar system.

References

  1. Abdelaziz, T. H. S. (2008). Robust pole assignment for linear time-invariant systems using state-derivative feedback. Proc. IMechE, Journal of Systems and Control Engineering, 223:187–199.
  2. Balakrishnan, H. and Verghese, G. C. (2012). 6.02 introduction to eecs ii digital communication systems. Digital Communication Systems. OpenCourseWare.
  3. Basile, G. and Marro, G. (1973). A new characterization of some structural properties of linear systems: Unknowninput observability, invertibility and functional controllability. International Journal of Control, 17(5):931–943.
  4. Basile, G. and Marro, G. (1992). Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Inc.
  5. Burden, R. L. and Faires, J. D. (2011). Numerical Analysis. Richard Stratton, editor, ninth edition. Boston, U.S.
  6. Cardim, R., Teixeira, M. C. M., Assunc¸~ao, E., and Covacic, M. R. (2007). Design of state-derivative feedback controllers using a state feedback control design. In 3rd IFAC Symposium on System Structure and Control, editors, IFAC Proceedings Volumes, volume 40, pages 22–27. Elsevier.
  7. Duan, Y. F., Ni, Y. Q., and Ko, J. M. (2005). Statederivative feedback control of cable vibration using semiactive magnetorheological dampers. Computer- Aided Civil and Infranstructure Engineering, 20:431–449.
  8. Fahmy, M. M. and O’Reilly, J. (1989). Parametric eigenstructure assignment for continuous-time descriptor systems. International Journal of Control, 49(1):129–143.
  9. Floquet, T. and Barbot, J. P. (2006). Advances in variable structure and sliding mode control, chapter A canonical form for the design of unknown input sliding mode observers, pages 271–292. Springer.
  10. Gilbert, E. G. (1969). The decoupling of multivariable systems by state feedback. SIAM Journal of Control and Optimization, 7:50–63.
  11. Gonzalez, J. A. and Sueur, C. (2018). Unknown input observer with stability: A structural analysis approach in bond graph. European Journal of Control, 41:25–43, doi.org/10.1016/j.ejcon.2018.01.006.
  12. Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Other Titles in Applied Mathematics. SIAM, second edition. Philadelphia, U.S.
  13. Hautus, M. L. J. (1979). (A-B)-invariant and stability subspaces: a frequency domain description with applications. Memorandum COSOR, 7915.
  14. Kailath, T. (1980). Linear Systems. Prentince Hall, Englewood-Cliff, N.J.
  15. Kalman, R. E., Falb, P. L., and Arbib, M. A. (1969). Topics in Mathematical System Theory. McGraw-Hill, New York.
  16. Lewis, F. L. and Symons, V. L. (1991). A geometric theory for derivative feedback. IEEE Transactions on Automatic Control, 36:1111–1116.
  17. Moreira, M. R., J´unior, E. I. M., Esteves, T. T., Teixeira, M. C. M., Cardim, R., Assunc¸ ˜ao, E., and Faria, F. A. (2010). Stabilizability and disturbance rejection with state-derivative feedback. Mathematical Problems in Engineering,Hindawi Publishing Corporation, 2010:12
    pages.
  18. Morse, A. S. (1973). Structural invariants of linear multivariable systems. SIAM J. Control, 11:446–465.
  19. Rosenberg, R. and Karnopp, D. (1983). Introduction to physical system dynamics. McGraw Hill.
  20. Rosenbrock, H. (1970). State space and multivariable theory. Nelson, London, England.
  21. Sueur, C. (2016). Disturbance rejection with derivative state feedback. In 9th International Conference on Integrated Modeling and Analysis in Applied Control and Automation, IMAACA’16, Larnaca, Cyprus.
  22. Verghese, G. C. and Kailath, T. (1979). Impulsive behavior in dynamical systems, structure and significance. In Proc. 4th Int. Symp. Marh. Theory, Networks Syst.
  23. Verghese, G. C., Levy, B. C., and Kailath, T. (1981). A generalized state-space for singular systems. IEEE Transactions on Automatic Control, vol. AC-26:811–831.
  24. Wonham, W. M. (1985). Linear Multivariable Control. Springer-Verlag, New York, U.S., 3rd edition.
  25. Yang, D., Tarasov, E., Sueur, C., and Ould-Bouamama, B. (2013). New unknown input observer for control design: a bond graph approach. SSSC-IFAC’2013, Grenoble, France.