Bond graph approach for input-output decoupling of linear MIMO systems with Derivative State Feedback

  • Cristophe Seur 
  • Ecole Centrale de Lille, CRIStAL UMR CNRS 9189, CS 20048 59651, Villeneuve d’Ascq Cedex France
Cite as
Sueur C. (2018). Bond graph approach for input-output decoupling of linear MIMO systems with Derivative State Feedback. Proceedings of the 11th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2018), pp. 18-27. DOI: https://doi.org/10.46354/i3m.2018.imaaca.003

Abstract

This paper presents a new solution for the well-known input-output decoupling problem of linear multivariable systems with a derivative state feedback control law. A simple solution to the pole placement problem is highlighted in the monovariable and multivariable cases with application to a mechanical system. Analysis up to control design are achieved structurally in the bond graph domain for the case study.

References

  1. Basile, G. and Marro, G. (1992). Controlled invariants and conditioned invariants in linear system theory. Pretince Hall, New Jersey.
  2. Bertrand, J. M., Sueur, C., and Dauphin-Tanguy, G. (1997). Bond graph for modeling and control: structural analysis tools for the design of input-output decoupling state feedbacks. Proceedings of International Conference on Bond Graph Modeling and Simulation, Phoenix, pages 103–108.
  3. Bonilla-Estrada, M. and Malabre, M. (2000). Proportional and derivative state-feedback decoupling of linear systems. IEEE Transactions on Automatic Control, 45:4:730–733.
  4. Brunovsky, P. (1970). A classification for linear controllable systems. Kybernetika, 6:173–187.
  5. Commault, C. and Dion, J. M. (1982). Structure at infinity of linear multivariable systems : a geometric approach. IEEE Transactions on Automatic control, 27:693–696.
  6. Descusse, J. and Dion, J. M. (1982). On the structure at infinity of linear square decoupled systems. IEEE Transactions on Automatic Control, 27:971–974.
  7. Dion, J. M. and Commault, C. (1982). Smith-McMillan factorizations at infinity of rational matrix functions and their control interpretation. System & Control Letters, 1:312–320.
  8. Dion, J. M. and Commault, C. (1993). Feedback decoupling of structured systems. IEEE Transactions on Automatic Control, 38:1132–1135.
  9. Fahmy, M. and O’Reilly, J. (1989). Parametric eigenstructure assignment for continuous-time descriptor systems. International Journal of Control, 49(1):129–143.
  10. Falb, P. L. and Wolovich, W. A. (1967). On the decoupling of multivariable systems. Preprints JACC, Philadelphia, pages 791–796.
  11. Gilbert, E. G. (1969). The decoupling of multivariable systems by state feedback. SIAM Journal of Control and Optimization, 7:50–63.
  12. Gonzalez, J. A. and Sueur, C. (2018a). Bond graph approach for disturbance rejection with derivative state feedback. 11th IMAACA’18, part of 15th I3M2013, Budapest, September 17-19, Hungary.
  13. Gonzalez, J. A. and Sueur, C. (2018b). Unknown input observer with stability: A structural analysis approach in bond graph. European Journal of Control, doi.org/10.1016/j.ejcon.2018.01.006, 41:25–43.
  14. Icart, S., Lafay, J. F., and Malabre, M. (1989). A unified study of the fixed modes of systems decoupled via regular static state feedback. In Proc. Joint Conf: New Trends in System Theory, Genoa - Italy, Birkhauser, Boston:425–432.
  15. Kailath, T. (1980). Linear Systems. Prentince Hall, Englewood-Cliff, N.J.
  16. Koumboulis, F. N. (2016). P-d state feedback controllers for common i/o decoupling of multi model descriptor systems. 24th Mediterranean Conference on Control and Automation (MED), June 21-24, Athens, Greece, pages 82–87.
  17. Koussiouris, T. C. (1980). A frequency domain approach to the block decoupling problem ii: pole assignment while block decoupling a minimal system by state feedback and a non singular input transformation and the observability of the block decoupled system. Int. Journal of Control, 32:443–464.
  18. Linnemann, A. (1981). Decoupling of structured systems. Systems & Control Letters, 1:79–86.
  19. Martinez-Garcia, J. C., Malabre, M., and Rabah, R. (1994). The partial non interacting problem: Structural and geometric solutions. Kybernetika, 30(6):645–658.
  20. Moreira, M. R., J´unior, E. I. M., Esteves, T. T., Teixeira, M. C. M., Cardim, R., Assunc¸ ˜ao, E., and Faria, F. A. (2010). Stabilizability and disturbance rejection with state-derivative feedback. Hindawi Publishing Corporation, Mathematical Problems in Engineering, Article
    ID 123751, 12 pages, doi:10.1155/2010/123751.
  21. Morgan, B. (1964). The synthesis of linear multivariable systems by state variable feedback. Proc.1964 JACC, Stanford, California, pages 446–465.
  22. Morse, A. S. (1973). Structural invariants of linear multivariable systems. SIAM J. Control, 11:446–465.
  23. Morse, A. S. and Wonham, W. (1973). Status of noninteracting controls. IEEE Trans. Auto. Contr., AC-11:568–581.
  24. Rosenberg, R. and Karnopp, D. (1983). Introduction to physical system dynamics. McGraw Hill.
  25. Rosenbrock, H. (1970). State space and multivariable theory. Nelson, London, England.
  26. Sueur, C. (2016). Disturbance rejection with derivative state feedback. In 9th International Conference on Integrated Modeling and Analysis in Applied Control and Automation, IMAACA’16, Larnaca, Cyprus.
  27. Sueur, C. and Dauphin-Tanguy, G. (1992). Poles and zeros of multivariable linear systems: a bond graph approach. in: Bond Graph for Engineers(P.C. Breedveld and G. Dauphin-Tanguy), pages 211–228. Elsevier Science Publisher B. V.
  28. Tseng, Y. W. (2009). Vibration control of piezoelectric smart plate using estimated state derivatives feedback in reciprocal state space framework. International Journal of Control Theory and Applications, 2 (1):61–71.
  29. van derWoude, J.W. (1991). On the structure at inifnity of a structured system. Linear Algebra and its Applications, 148:145–169.
  30. Verghese, G. C., Lévy, B. C., and Kailath, T. (1981). A generalized state space for singular systems. IEEE Transactions on Automatic Control, 26 (4):811–831.
  31. Wonham, W. M. and Morse, A. (1970). Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM Journal of Control and Optimization, 8:1–18.