Control of a mobile robotic manipulator: a combined design approach

  • ab Martín Crespo  , 
  • ab Matías Nacusse  ,
  • a Sergio Junco  , 
  • c Vitalram Rayankula  ,
  • c Pushparaj Mani Pathak 
  • aLaboratorio de Automatización y Control (LAC), Departamento de Control, FCEIA, UNR. Rosario, Argentina
  • bCONICET: Consejo Nacional de Investigaciones Científicas y Técnicas. Argentina
  • cDepartment of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, India
Cite as
Crespo M., Nacusse M., Junco S., Rayankula V., Mani Pathak P. (2018). Control of a mobile robotic manipulator: a combined design approach. Proceedings of the 11th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2018), pp. 53-62. DOI: https://doi.org/10.46354/i3m.2018.imaaca.007

Abstract

This paper focuses on the problem of reducing via control actions the interaction between the mobile platform and the arm in a mobile robot equipped with a redundant planar manipulator. It is solved maintaining the mobile base as immobile as possible once it has been moved to a desired position, which serves to a double purpose. On the one hand, it helps keeping fixed the workspace of the manipulator, as predefined in the world coordinates, in order for the end-effector being able to reach the points where it has to perform its tasks. On the other hand, as this reduces the disturbances that the otherwise moving base would introduce on the arm movement, this serves to improve the precision in the execution of whatever task the end-effector has to perform. The problem is solved via a combination of operational space control to solve the arm tip trajectory tracking problem and energy-shaping and damping assignment to restrict the movement of the mobile base. The latter is achieved using a backstepping technique in the Bond Graph domain which emulates dissipation and stiffness at the base wheels coordinates through the control of the DC motors actuating them. Simulation results show the good performance of the control system.

References

  1. Buckingham, R. O., & Graham, A. C. (2010, Oct). Dexterous manipulators for nuclear inspection and maintenance - Case study. CARPI, (pp. 1-6).
  2. Chung, J. H., Velinsky, S. A., & Hess, R. A. (1998). Interaction Control of a Redundant Mobile
    Manipulator. IJRR, 17(12), 1302-1309.
  3. Bickel, R. and Tomizuka, M. (1999) 'Passivity-Based Versus Disturbance Observer Based Robot Control: Equivalence and Stability', ASME. J. Dyn. Sys., Meas., Control, vol. 121, no. 1, pp. 41-47.
  4. Controllab Products, B. V. (n.d.). 20-sim. 20-sim.
  5. Dauphin-Tanguy, G., Rahmani, A., & Sueur, C. (1999). Bond graph aided design of controlled systems. Simulation Practice and Theory, 493-513.
  6. Garcia, E., Jimenez, M. A., Santos, P. G., & Armada, M. (2007, March). The evolution of robotics research. IEEE-RAM, 14(1), 90-103.
  7. Ge, W., Ye, D., Jiang, W., & Sun, X. (2008, Nov). Sliding mode control for trajectory tracking on mobile manipulators. IEEE-APCCAS, (pp. 1834-1837).
  8. Hsu, S.-H., & Fu, L.-C. (2006). A fully adaptive decentralized control of robot manipulators.
    Automatica, 42(10), 1761-1767.
  9. Junco, S. (2004). Virtual Prototyping of Bond Graphs Models for Controller Synthesis through Energy and Power Shaping. IMAACA 2004.
  10. Junco, S., & Donaire, A. (2005). BG-Supported Synthesis of Speed- and Position-Tracking Controllers for Brushless DC-Motor Drives. ICBGM'05, (pp. 245- 251). New Orleans (USA).
  11. Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2006). System Dynamics: Modeling and Simulation of Mechatronic Systems. NY, USA: John Wiley & Sons, Inc.
  12. Liu, K., & Lewis, F. L. (1990, May). Decentralized continuous robust controller for mobile robots. IEEEICRA, (pp. 1822-1827).
  13. Liu, S., Yang, Z., Zhu, Z., Han, L., Zhu, X., & Xu, K. (2016). Development of a dexterous continuum manipulator for exploration and inspection in confined spaces. Industrial Robot: an intenational journal, 43(3), 284-295.
  14. Marconi, L., Basile, F., Caprari, G., Carloni, R., Chiacchio, P., Hurzeler, C., et al. (2012, Sept). Aerial service robotics: The AIRobots perspective. CARPI, (pp. 64-69).
  15. Minami, M. (2007). Avoidance Ability of Redundant Mobile Manipulators During Hand Trajectory Tracking. JACIII, Vol.11(No.2), 135-141.
  16. Ngo, M. D., Phuong, N. T., Duy, V. H., Kim, H. K., & Kim, S. B. (2007). Control of two Wheeled Welding Mobile Manipulator. IJARS, 4(3), 32.
  17. Ram, R. V., Pathak, P. M., & Junco, S. J. (2018). Trajectory control of a mobile manipulator in the presence of base disturbance. SIMULATION.
  18. Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics: Modelling, Planning and Control. Springer.
  19. Spong, M. W., & Vidyasagar, M. (2008). Robot Dynamics And Control. Wiley India Pvt. Limited.
  20. Viet, T. D., Doan, P. T., Hung, N., Kim, H. K., & Kim, S. B. (2012). Tracking control of a three-wheeled omnidirectional mobile manipulator system with disturbance and friction. JMST, 2197-2211.
  21. White, G. D., Bhatt, R. M., Tang, C. P., & Krovi, V. N. (2009, June). Experimental Evaluation of Dynamic Redundancy Resolution in a Nonholonomic Wheeled Mobile Manipulator. IEEE/ASME TMECH, 14(3), 349-357.
  22. Yamamoto, Y., & Yun, X. (1996, Oct). Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE T-RA, 12(5), 816-824.