Study of supply chain vulnerabilities based on cognitive engineering and ARIMA formal models

  • Leila Sakli  , 
  • Jean Marc Mercantini ,
  •  Jean Claude Hennet
  • Aix-Marseille Université Laboratoire des Sciences de l’Information et des Systèmes (UMR CNRS n° 7296) Domaine universitaire de Saint Jérôme Avenue Escadrille Normandie-Niemen 13397 Marseille cedex 20
Cite as
Sakli L., Mercantini J.-M., Hennet J.-C. (2018). Study of supply chain vulnerabilities based on cognitive engineering and ARIMA formal models. Proceedings of the 11th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2018), pp. 73-82. DOI: https://doi.org/10.46354/i3m.2018.imaaca.009

Abstract

This research concerns the formulation of models and methods for supply chains risk analysis. An ontological approach using the KOD method (Knowledge Oriented Design) has been implemented to clearly identify relationships between the concepts of supply chain, risk, vulnerability and disturbances (critical scenarios). As a result, conceptual models of supply chains facing risk situations and critical scenarios are proposed. From the resulting conceptual models and mathematical models proposed in the literature, a multi-stage supply chain model using ARIMA models incorporating the randomness of the demand has been elaborated. In order to adapt this model to scenario criticality, constraints on orders and inventories have been taken into account. Under critical disturbances on information flows (demand) and physical flows (quality of the product supplied), constraints can be reached and supply chain behaviours can evolve toward critical dynamics or even become unstable. Supply chain vulnerabilities has been assessed and discussed.

References

  1. Aussenac-Gilles N., Biébow B. and Szulman S., 2000. Revisiting Ontology Design: a method based on corpus analysis. EKAW-2000, Proceedings of the 12th International Conference on Knowledge Engineering and Knowledge Management, R. Dieng et O. Corby (éd.), LNAI 1937, Springer, pp. 172-188.
  2. Barroca B., DiNardo M., Mboumoua I., 2013. De la vulnérabilité à la résilience : mutation ou bouleversement ? EchoGéo [En ligne], 24 / 2013.  URL : http://echogeo.revues.org/13439 ; DOI:10.4000/echogeo.13439.
  3. Botta-Genoulaz V., 2005. Principes et méthodes pour l’intégration et l’optimisation du pilotage des systèmes de production et des chaînes logistiques. HDR. Institut National des Sciences Appliquées de Lyon et Université Claude Bernard de Lyon 1.
  4. Borst P. et H. Akkermans. An ontology approach to product disassembly. In International Conference on Knowledge Engineering and Knowledge Management. October 1997: 33-48.
  5. Bouchriha H., 2002. Faire ou faire-faire dans la conception d'une chaîne logistique: un outil d'aide à la décision. Doctoral dissertation. Institut National Polytechnique de Grenoble-INPG.
  6. Box G.E.P. et Jenkins G.M., 1976. Time series analysis forecasting and control. Holden-Day.
  7. Box G.E.P., Jenkins G.M., Reinsel G.C., 2011. Time series analysis: forecasting and control. Time series analysis: forecasting and control, (John Wiley & Sons), Vol. 734.
  8. Caroll J.M., 1997. Scenario-Based Design. In M. Helander, T.K. Landauer, P. Prabhu (Ed.),
    Handbook of Human-Computer Interaction (Chapter 17). Second completely revised edition, Elsevier Science B.V.
  9. Chopra S. & Sodhi M.S., 2004. Managing risk to avoid supply-chain breakdown. MIT Sloan Management Review (Fall 2004).
  10. Dahlgren K. 1995. A Linguistic Ontology. International Journal of Human-Computer Studies, vol. 43, n°5, pp. 809-818.
  11. Gandon F., 2002. Ontology engineering: a survey and a return on experience. Research Report n° 4396. INRIA Sophia-Antipolis, mars 2002.
  12. Gilbert K., 2005. An ARIMA supply chain model. Management Science 51.2 (2005): 305-310.
  13. Gruber T.R., 1993. A translation approach to portable ontology specifications. Knowledge acquisition, pp 199-220.
  14. Haywood M., 2002. An investigation into supply chain vulnerability management within UK aerospace manufacturing supply chains. MSc thesis, Cranfield University, 2002.
  15. Hennet, J.-C. & Mercantini J.-M., 2010. Modeling and evaluation of vulnerabilities in a supply chain. 8th International Conference of Modeling and Simulation. MOSIM’10, May 10-12, 2010.
  16. Juttner U., Peck H., Christopher M., 2003. Supply chain risk management: outlining an agenda for future research. International Journal of Logistics: Research and Applications 6.4 (2003): 197-210.
  17. Lauras M., et al., 2003. Référentiel de l’entente industrielle : 3 approches dans le domaine de la gestion des chaînes logistiques. 5ème Congrès International de Génie Industriel octobre 2003.
  18. Lee H.L. et Billington C., 1993. Material management in decentralized supply chain. Operations Research 41.5.
  19. Lhomme S., Serre D., Diab Y., Laganier R., 2010. Les réseaux techniques face aux inondations ou comment définir des indicateurs de performance de ces réseaux pour évaluer la résilience urbaine, Bulletin de l’Association de Géographes Français, pp 487-502.
  20. Mercantini J.-M., Capus L., Chouraqui E., Tourigny N., 2003. Knowledge Engineering contributions in traffic road accident analysis. In: Ravi K. Jain, Ajith Abraham, Colette Faucher, Berend Jan Van der Zwaag, eds. Innovations in Knowledge Engineering. pp 211-244.
  21. Mercantini J.-M., Turnell M.F.Q.V, Guerrero C.V.S, Chouraqui E., Vieira F.A.Q et Pereira M.R.B,
    2004. Human centred modelling of incident scenarios. IEEE SMC 2004, Proceedings of the
    International Conference on Systems, Man & Cybernetics, pp. 893-898. October 10-13, The
    Hague, The Netherlands.
  22. Mercantini JM., Tourigny N., Chouraqui E., 2007. Elaboration d’ontologies à partir de corpus en utilisant la méthode d’ingénierie des connaissances KOD. 1ère édition des Journées Francophones sur les Ontologies (JFO 2007), n° ISBN : 978-9973-37-414-1, pp 195-214, 18–20 Octobre 2007, Sousse (Tunisie).
  23. Mercantini J.-M., 2015. Building a domain ontology to design a decision support software to plan fight actions against marine pollutions. In: Springer- Verlag, Risk and Cognition, Mercantini JM. and Faucher C. (Editors). Intelligent Systems Reference Library, Vol. 80, January 2015.
  24. Sakli L., Hennet J.-C., Mercantini J.-M., 2014. An Analysis of Risks and Vulnerabilities in Supply Networks. World Congress 19.1, 8933-8938.
  25. Sakli L., Hennet J.-C., Mercantini J.-M., 2015. Impact of Changes in Quality of Deliveries on the Vulnerability of Supply Chains. Risks and Resilience of Collaborative Networks. Springer International Publishing, pp. 578-587.
  26. Thierry C. & Bel G., 2002. Gestion de chaines logistiques dans le domaine aéronautique : outils d’aide a la décision pour l’amélioration du partenariat. Revue Française de Gestion Industriel.
  27. Uschold M. and King M., 1995. Towards a Methodology for Building Ontologies. Proceedings of the IJCAI-95 Worshop on Basic Ontological Issues in Knowledge Sharing, Montréal (Canada).
  28. Uschold M. and Grüninger M., 1996. Ontologies: Principles, methods and applications. Knowledge Engineering Review, volume 11, n° 2, pp. 93-136.
  29. Vogel C., 1988. Génie cognitive. Paris, Masson (Sciences cognitives).
  30. Zsidisin G., 2003. Managerial perception of risk. Journal of Supply Chain Management. pp 14-25.