New approach to PMSM parameters identification

  • Jean Claude Rakotoarisoa 
  •  Gino Hadjee  
  •  Jean N. Razafinjaka 
  • a,c Electrical Engineering Department, Automation Laboratory, University of Antsiranana, Madagascar
  • b Electrical Engineering Department, Electricity Laboratory, University of Antsiranana, Madagascar
Cite as
Rakotoarisoa J.C., Hadjee G., Razafinjaka J.N. (2018). New approach to PMSM parameters identification. Proceedings of the 17th International Conference on Modeling & Applied Simulation (MAS 2018), pp. 55-60. DOI: https://doi.org/10.46354/i3m.2018.mas.009

Abstract

This paper aims to the identification of a Permanent Magnet Synchronous Machine parameters by using Diffedge approach. In this case, the identification problem is considered as an optimization one. Parameters sensibility, the exact calculation of gradient and Jacobean in respect with the parameters are done by using symbolic derivative expressed by diagram. Two optimization process are here proposed: the first method uses the formal Jacobean found by finite differences and the second one uses the formal Jacobean calculated by Diffedge. The proposal validation consists of the convergence comparison and obtained results. It is here highlighted that the Diffedge approach leads to better results as convergence, robustness.

References

  1. Gilbert R.J.C, Le Vey G. and John M., 1991. La différentiation automatique de fonctions représentées par des programmes Tech rep 1557 INRIA
  2. John M. and Cambois T., 2004. “Differentiation, sensitivity analysis and identification of hybrid Models under Simulink”, Symposium Techniques Avancéeés et Stratégies Innovantes en Modélisation et Commandes Robustes des Processus Industriels, Martigues, 21 & 22 septembre 2004.
  3. Bastogne T., Thomassin M. and John M., 2007. “Selection and identification of physical parameters from passive observation. Application to a winding process” Control Engineering, Practice, Elsevier, 2007, 15 (9), pp.1051-1061.
  4. John M. and Clara M., 2004. Automatic differentiation of hybrid models Illustrated by Diffedge Graphic Methodology. APPEDGE 18–22, rue d’Arras 92000 Nanterre, France
  5. Griffith, D. V., Smith, M., 1991 « Numerical Methods for Engineers », Blackwell Scientific Publication
  6. Davide A, 2004. « Identification des paramètres du moteur à induction triphasé en vue de sa commande vectorielle », Mémoire de maitrise en génie électrique, Université de Laval, Quebec, Décembre 2004.
  7. Kimbark E.W, 1995. Power system stability : Synchronous Machines, ISBN 0-7803-1135-3, IEEE Press.
  8. Sturtzer G. and Smichel E., 2000. Modélisation et Commande des Moteurs Triphasés., Edition Ellipses, Paris.
  9. Cardenas-Dobson R., 1996. Control of Wind Turbine Using a Switched Reluctance Generator. PhD Thesis, University of Nottingham.
  10. Dennis J.E, More and Holland J., 1977. Quasi-Newton
    methods, motivation and theory. SIAM Review,
    Vol. 19, No. 1, pp. 46-89.