This study presents the modelling and dynamic simulation of an Isolated Wind Power System (IWPS) consisting of a Wind Turbine Generator (WTG), a synchronous machine (SM), consumer load, dump load (DL) and a Battery Energy Storage System (BESS). First the IWPS architecture and the dynamic models of the IWPS components are described. Second, the control requirements for frequency regulation of the IWPS are studied and a PID regulator to govern the active power stored+dumped by the BESS+DL combination or supplied by the BESS along with a power sharing algorithm between the BESS and DL is presented. Finally the IWPS is simulated facing to variations to load and WTG power. The simulation results are given showing graphs of the main electrical variables in the IWPS: system frequency and voltage and active power in each component. The results show how the BESS or BESS+DL combination regulates correctly the isolated system frequency. The results also show that the BESS improves the IWPS reliability when compared with the frequency control obtained using only the DL.