Juxtaposing visual layouts – an approach for solving analytical and exploratory tasks through arranging visual interfaces

  • Kawa Nazemi  
  • bDirk Burkhardt  
  • abDarmstadt University of Applied Sciences Haardtring 100, 64295 Darmstadt, Germany
Cite as
K. Nazemi, D. Burkhardt (2018). Juxtaposing visual layouts – an approach for solving analytical and exploratory
tasks through arranging visual interfaces. Proceedings of the 4th International Conference of The Virtual And Augmented Reality In Education (VARE 2018), pp. 144-153. DOI: https://doi.org/10.46354/i3m.2018.vare.022

Abstract

Interactive visualization and visual analytics systems enables solving a variety of tasks. Starting with simple search tasks for outliers, anomalies etc. in data to analytical comparisons, information visualizations may lead to a faster and more precise solving of tasks. There exist a variety of methods to support users in the process of task solving, e.g. superimposing, juxtaposing or partitioning complex visual structures. Commonly all these methods make use of a single data source that is visualized at the same time. We propose in this paper an approach that goes beyond the established methods and enables visualizing different databases, data-sets and sub-sets of data with juxtaposed visual interfaces. Our approach should be seen as an expandable method. Our main contributions are an in-depth analysis of visual task models and an approach for juxtaposing visual layouts as visual interfaces to enable solving complex tasks

References

  1. Buja A., Cook D. and Swayne D. F, 1996. Interactive high-dimensional data visualization. Journal of Computational and Graphical Statistics 5 (1996), pp. 78–99.
  2. Chuah M. C. and Roth S. F., 1996. On the semantics of interactive visualizations. In INFOVIS ’96: Proceedings of the 1996 IEEE Symposium on Information Visualization (INFOVIS ’96). (Washington, DC, USA, 1996), IEEE Computer Society.
  3. Fluit C., Sabou M. and van Harmelen F., 2004. Supporting user tasks through visualisation of lightweight ontologies. In Steffen Staab and Rudi Studer (eds.) Handbook on Ontologies. International Handbooks on Information Systems. Springer, 2004, pp. 415–434.
  4. Fluit C., Sabou M. and van Harmelen F., 2006. Ontology-based information visualization: Towards semantic web applications. In In Geroimenko, V. and Chen, C. (eds.): Visualizing the Semantic Web. XML-Based Internet and Information Visualization. Second Edition. Springer-Verlag London Limited, 2006.
  5. Hearst M. A., 2009. Search User Interfaces. Cambridge University Press, Cambridge, UK.
  6. Keller P. R. and Keller M. M., 1994. Visual Cues: Practical Data Visualization. Los Alamitos, CA. IEEE Computer Society Press.
  7. Kohlhammer J., 2005. Knowledge Representation for Decision-Centered Visualization. Thesis (PhD), Technische Universität Darmstadt.
  8. Marchionini G., 1995. Information Seeking in Electronic Environments. Cambridge University Press.
  9. Marchionini G., 2006. Exploratory search: from finding to understanding. Commun. ACM 49, 4 (Apr. 2006), 41–46.
  10. Munzner, T., 2014. Visualization Analysis & Design. A K Peters Visualization Series, CRC Press.
  11. Portman, M.E., Natapov, A., Fisher-Gewirtzman, 2015. To go where no man has gone before: Virtual reality in architecture, landscape architecture, and environmental planning. Computers, Environment, and Urban Systems (54), 376–384. http://dx.doi.org/10.1016/j.compenvurbsys.2015.05.001
  12. Nazemi, K., 2014. Adaptive Semantics Visualization. Thesis (PhD), Technische Universität Darmstadt.
  13. Pike W. A., Stasko J., Chang R. and O’Connell T. A. 2009. The science of interaction. Information Visualization 8, 4 (Dec. 2009), 263–274.
  14. Shneiderman B., 1996. The eyes have it: A task by data type taxonomy for information visualizations. In VL, pp. 336–343.
  15. van Ham F., A. P., 2009. Search, show context, expand on demand: Supporting large graph exploration with degree-of-interest. IEEE Trans. Vis. Comput. Graph. 15 (2009), 953–690.
  16. Treisman A. M. and Gelade G., 1980. A featureintegration theory of attention. Cognitive
    Psychology 12.
  17. Wehrend S. and Lewis C., 1990. A problem-oriented classification of visualization techniques. In VIS 90: Proceedings of the 1st conference on Visualization ’90 (Los Alamitos, CA, USA, 1990), IEEE Computer Society Press, pp. 139–143.
  18. White R. W., Roth R. A., 2009. Exploratory Search: Beyond the Query-Response Paradigm, vol. 1 of Synthesis Lectures on Information Concepts, Retrieval, and Services. G. Marchionini (Ed). Morgan & Claypool Publishers, 2009.
  19. Yi J. S., Ah Kang Y., Stasko J. and Jacko J., 2007. Toward a deeper understanding of the role of interaction in information visualization. Visualization and Computer Graphics, IEEE Transactions on 13, 6 (nov.-dec. 2007), 1224 – 1231.
  20. Zhou M. X. and Feiner S. K. 1998, Visual task characterization for automated visual discourse synthesis. In CHI ’98: Proceedings of the SIGCHI conference on Human factors in computing systems New York, NY, USA, 1998), ACM Press/Addison-Wesley Publishing Co., pp. 392–399.