
DEEP LEARNING OF VIRTUAL-BASED AERIAL IMAGES: INCREASING THE

FIDELITY OF SERIOUS GAMES FOR LIVE TRAINING

Dean Reed(a), Troyle Thomas(b), Shane Reynolds(c), Jonathan Hurter(d) , Latika Eifert(e)

(a),(b),(c),(d) Institute for Simulation and Training, University of Central Florida
(e) U.S. Army Futures Command, Combat Capability Development Command-Soldier Center

(a) dreed@ist.ucf.edu, (b) tthomas@ist.ucf.edu, (c)sreynold@ist.ucf.edu, (d)jhurter@ist.ucf.edu
(e)latika.k.eifert.civ@mail.mil

ABSTRACT

The aim of rapidly reconstructing high-fidelity, Synthetic

Natural Environments (SNEs) may benefit from a deep

learning algorithm: this paper explores how deep

learning on virtual, or synthetic, terrain assets of aerial

imagery can support the process of quickly and

effectively recreating lifelike SNEs for military training,

including serious games. Namely, a deep learning

algorithm was trained on small hills, or berms, from a

SNE, derived from real-world geospatial data. In turn,

the deep learning algorithm’s level of classification was

tested. Then, assets learned (i.e., classified) from the

deep learning were transferred to a game engine for

reconstruction. Ultimately, results suggest that deep

learning will support automated population of high-

fidelity SNEs. Additionally, we identify constraints and

possible solutions when utilising the commercial game

engine of Unity for dynamic terrain generation.

Keywords: synthetic natural environment, live military

training, deep learning, simulation fidelity

1. INTRODUCTION

For positive training transfer to occur in a military

simulation, the highest possible representation of the

natural terrain must be achieved. To exemplify the train-

as-we-fight mantra, any scenario represented by game

engines needs a high, consistent correlation with the Real

World (RW). The effective-and-efficient creation of

terrain that meets accuracy requirements for live (such as

augmented) military training environments continues to

be a significant challenge. Thus, the purpose of this paper

is to aid in the rapid reconstruction of Synthetic Natural

Environments (SNEs) for training, by simultaneously

maintaining both effectiveness (i.e., high fidelity) of the

final environment and efficiency (i.e., a low amount of

resources) within the reconstruction process. To reach

this purpose, the first-tier goal of the paper is multifold:

to test the classification accuracy of a deep learning

algorithm trained on a SNE, and test the subsequent

reconstruction of a SNE based off the classification from

the deep learning algorithm. A second-tier goal is to

identify constraints in a game engine’s terrain generation

process, as lessons learned for future research.

1.1. Related Work

Representing RW or geo-specific training regions to a

very high degree of RW correlation, while maintaining

cost-effectiveness, has been elusive. In one method,

scenario environments can be painstakingly built by

artists—reducing efficiency and introducing a potential

human-error confound to effectiveness. Some alternate

solutions have been proposed: one example is the

automatic generation of terrain from aerial

photogrammetry (Spicer, McAlinden, and Conover

2016). With the advent of low-cost and highly-reliable

drone platforms, obtaining dense point-cloud data from

either photogrammetric or LiDAR sources has become

commonplace. However, processing the dense point

cloud into usable and efficient polygonal, game-engine-

based geospecific regions of sufficient geographic size to

perform on-going mission training remains a challenge.

One issue is the high-resolution automatic classification

of different features (e.g., capturing the distinction

between human-made structures and natural terrain). We

distinguish this high-resolution classification from the

traditional coarse-grain approach of Digital Terrain

Model (DTM) and Digital Surface Model (DSM)

methods commonly provided by Commercial-Off-The-

Shelf (COTS) software tools. Furthermore, injection of

numerous raw or coarse point-cloud-derived polygonal

models into the game-engine-based rendering system is

both inefficient and distracting for the trainee.

The U.S. Army’s One World Terrain (OWT) program is

a large program attempting to solve these terrain-related

issues. The goal of OWT is to provide foundational,

attributed 3D data to runtime publishers (i.e. consumers)

that is well-formed and consumable at the Point-Of-Need

(PON). OWT will contain polygonal mesh OBJ data and

a traditional-gridded CDB standard (e.g. elevation grids,

imagery, and vectors). OWT data should be viewable and

editable with no proprietary tools required. OWT will

leverage Open Geospatial Consortium (OGC) CDB to

add rigour, structure, attribution and determinism to OBJ

files. Nevertheless, machine learning (via a deep neural

network) to classify and reconstruct objects from aerial

imagery point clouds has been introduced (Zhang, Li, Li

& Liu, 2018). Although the latter avenue of work

supplies a classification process, it is limited by training

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

1

DOI: https://doi.org/10.46354/i3m.2019.dhss.001

mailto:dreed@ist.ucf.edu
mailto:tthomas@ist.ucf.edu
mailto:sreynold@ist.ucf.edu
mailto:jhurter@ist.ucf.edu
mailto:latika.k.eifert.civ@mail.mil

a deep learning algorithm through non-virtual data,

which is a problematic method from the vantage of

efficiency.

In the advancement of machine learning, previous

research suggests the value (in terms of efficiency and

effectiveness) of using virtual, or synthetic, imagery

datasets to train object classification of RW imagery: a

deep learning algorithm was successfully tested for

classification after training on a virtual military helmet

(Reed, Thomas, Eifert, Reynolds, Hurter, and Tucker

2018). Although virtual assets have been used to help

pre-train for aerial images (Kemker, Salvaggio, and

Kanan 2018), or enhance the training process (Chen,

Jiang, Li, Jia, and Ghamisi 2016), it is unclear how

virtual assets would fair as an exclusive training set for

aerial images. Ultimately, the present paper investigates

how the artificial-intelligence technique of deep learning

can be leveraged to alleviate the burden of having to

populate repetitive, but critical, terrain features in a SNE.

We also identify and explore shortcomings in the Unity

game engine as used to render SNEs.

1.2. Solution Space

The proposed solution for SNE reconstruction is to

leverage deep learning to help classify features of an

environment; in turn, the classified features can then be

utilised to populate a SNE with virtual models and

textures rapidly. The focus of this paper’s initial test is

the classification of berms or small hills (see Figure 1)

found in a SNE. For streamlining, the solution is directed

at training the deep learning algorithm using virtual,

rather than RW, imagery data.

Figure 1: Example of a Berm in a Synthetic Natural

Environment (SNE; Image Contrast Increased for

Presentation)

One can train a deep learning algorithm to classify geo-

specific features from aerial imagery. Once features are

learned, one may inject matched features with a high

degree of accuracy into the SNE. Given how large

defence organisations generally have a preexisting set of

high-quality terrain models, which are used to populate

geotypical and geospecific SNEs, deep learning serves as

a bridge to support automatic modelisation of simulated

military environments. Specifically, the U.S. Army has a

large resource of assets: with a large set of Synthetic

Environment (SE)-Core 3D models library called the

common models, the Army can access Games for

Training assets (e.g., the Virtual Battlespace game

engine or the Army Model Repository; PEO STRI n.d.;

Baker 2018). The availability of thousands of 3D models

is beneficial for training deep learning algorithms, since

these 3D models are existing assets usable for AI training

material. This process differs from performing very

expensive data collection of RW imagery.

Another linchpin of the solution is the capabilities of

game engines. Commercial game engines, such as Unity,

offer advanced features for rendering high-quality,

natural-looking environments. Thus, game engines

provide an apt tool to maintain ecological validity for

various military tasks, due to the possibility of high

fidelity afforded. However, a restriction arises with game

engines: although some engines support the import of

dense point-cloud data directly for small regions, the

same process does not lend itself to efficient rendering

over larger areas. Additionally, native dense point-clouds

will inherently contain surface inaccuracies from the

source sensor that causes the data to be unusable for

traditional simulation. These game engine limitations

underscore the need for a more efficient process for

large-scale SNE development.

The foreseen reconstruction solution would ideally be

routine for an Unmanned Aerial System (UAS), or drone.

Once a deep learning system is trained, a UAS could

collect data in the form of photos or LiDAR data,

represented by a 3D point cloud. Based on the models

derived from the point cloud, features would be

identified, classified, and then mapped to a terrain object.

Once an area is appropriately classified by the deep

learning algorithm, it can be seamlessly imported into a

game engine, such as Unity.

2. METHODOLOGY

Before detailing the experimental procedure, the second-

tier goal of this paper will be covered: the constraints

confronted (and solutions found) when attempting to use

Unity for dynamic terrain generation.

2.1. Challenges in Unity

Virtual environment developers have a decision to make

when deciding on how to implement terrain: in Unity,

one option would be to use the built-in terrain editor,

whereas another option would be to import a polygonal

mesh from another tool. In Unity’s 2018.3.8.f1 release

(Tchou 2018), updated terrain implementation supports

seamless operations between multiple co-located terrain

tiles. The native Unity terrain implementation is

beneficial, as it allows designers to quickly add content

to terrain by applying terrain brushes that paint

geotypical content on top of terrain tiles. Another benefit

of Unity’s native terrain is the relative efficiency of how

repeated objects are rendered at runtime. Native

implementations of objects, such as trees that are directly

handled en masse (in contrast to individually-placed

game objects) leads to superior handling in the draw

cycle and better overall performance.

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

2

An internal preliminary experiment tested the

implementation of native Unity terrain trees (i.e., terrain

objects) versus individual trees placed as game objects.

An individual, traditional 3D tree model was created with

three levels of detail. Using the Unity terrain tool, 13,000

trees were painted over a single terrain tile. We then

repeated the test but used game objects instead of a

traditional 3D model, and placed them at the exact

location of each tree in the first test. Locations of the trees

were determined by the treeInstances method of the

TerrainData Unity object. The Frames-Per-Second

(FPS), or framerate, measurements were provided by the

FRAPS program. A PC with a dual video card was used

to perform this test, with consistent specifications (see

Table 1).

Table 1: Testbed Specifications

CPU Intel Core i7-5960X

Memory 32GB

OS Windows 10 Enterprise

GPU 2x NVidia GeForce GTX 980 Ti

Ultimately, the native terrain condition used less memory

and rendered more efficiently than the game object

approach (see Table 2).

Table 2: Terrain Objects Vs. Game Objects, Tree

Models

Object Type Memory FPS CPU

Native Terrain 15% 36 6.6%

Game Object 16% 33 12.7%

As the results show, using the Unity terrain system to

manage the tree models is more efficient, with respect to

computer resources, and provides superior rendering

performance.

Despite the Unity game engine’s beneficial aspects

within the terrain editor, various challenges inherent in

using the native Unity terrain processes were found.

These issues altered the final methodology used, and are

discussed here as part of the methodological rationale.

Ultimately, these choices may inform future research

when considering the value of Unity’s impact on serious

military games.

Originally, a detail-mesh placement-map system was

tested, where pixel data (in the form of RGB values)

corresponded to different mesh objects. When placing

terrain objects, manually setting the rotation of objects

was unsupported. The system lacked the option for

correcting the direction objects faced, on a per-object

basis. However, the objects could be instructed to face

the camera consistently (i.e., an option for billboarding

existed). Further, the scaling of mesh objects was

limited; this is a fundamental difference between

injecting native terrain features and injecting

representative game objects into an environment:

typically, a game object can be used repeatedly with

various scales. In contrast, Unity’s native terrain-feature

scales are set uniformly, breeding inefficiency: to

account for scale variations of terrain, different-size

versions of the same object would be needed, in turn

requiring multiple maps. Another crucial control issue

with the aforementioned map process was the non-

deterministic placement of models: when an identical

map was reloaded, the locations of models were not

necessarily identical to the previous load. A similar non-

deterministic issue involved the terrain brush settings for

painting pixels on the map, due to the inability to

consistently equate one model to one pixel. If the brush

size was too large, multiple objects were placed; but if

the size was too small, there was a chance no objects

would be placed. Further errors may also be caused here

if a user changed the settings on detail resolution.

Another issue within the map used was the lack of

collision between objects. The lack of collisions is

problematic since it reduces the fidelity of the

environment: although the visuals may look real, they

would not function realistically. For example, an avatar

could walk through a berm or shoot a bullet through a

berm; this defeats the purpose of the current project’s

goal (at least for some types of ground-based training).

The detail-map size must also be consistent with the

terrain size: if the sizes did not match, the terrain system

would attempt to rescale the map, which skewed the

placement of an object. Finally, there was a limit of

objects allowed to be placed into a patch (i.e., an area of

terrain) in Unity. It appears an upper-limit was based on

vertices; given our terrain settings, this was an issue.

A limiter of fidelity was also calculated for the Unity

environments. The most common way to attribute height

vertices is to import a grayscale heightmap that

represents individual heights of the terrain as a two-

dimensional array of 16-bit grayscale values. This means

that a single terrain tile can have a maximum

representative range of 216 or 65,536 discrete values at

any one location in the 2D array. Current

implementations of Unity support a maximum density of

4,096+1 for the heightmap. This limitation means that

any grayscale-based terrain region represented by

Unity’s system must fit within this restriction. Selecting

our terrain’s ideal resolution to be of 1cm quality for each

of our possible grayscale values, we find that our lowest-

to-highest range spans a maximum distance of 655.36m

for a single terrain tile. If we are representing an urban,

fairly flat environment, this limitation is less concerning.

Representing hilly, or excessively rugged terrain would

require subdividing the tiles into very small segments.

We summarise the relationship between desired game

engine representation, in terms of representation fidelity

of the terrain, as:

𝐸𝑑 =
𝐹

216 (1)

𝑀𝑎 = (4,097𝐹)2 (2)

In equation (1) 𝐸𝑑 is the elevation delta with the fidelity

of 𝐹. Equation (2) shows the relationship between the

maximum area, Ma, and the desired fidelity of

representing the area expressed as a function of the

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

3

maximum Unity grayscale heightmap and the desired

representational fidelity. Overall, the limitation of the 16-

bit representation of depth and 4,097*4,097 resolution

limitation can be constraining when attempting to

preserve the highest possible RW representation within

the game engine. The University of Central Florida

Institute for Simulation and Training (or simply, IST) has

begun implementation of a Unity terrain importer

capable of preserving the original sensor fidelity. The

importer bridges the gap between traditional geospatial

source data and Unity terrain objects. The importer

ingests 3D formats generally associated with 3D models

(including OBJ, FBX, and DAE), which are then

translated into the native Unity terrain tiles.

2.2. Experimental Procedure Summary

The overall procedure for the experiment followed a

linear, stepwise process:

1. The physical data of the RW environment were

collected via images.

2. The physical data of the RW environment were used

to generate a point cloud.

3. The point cloud was converted to polygonal meshes.

4. The polygonal meshes were imported into the Unity

game engine as part of a SNE.

5. The SNE, as a section, was used as training fodder

for a deep learning model.

6. The deep learning model’s decisions were used to

infer and place game objects into the remaining

section of the SNE.

2.3. Data Collection Process

Sensors, such as LiDAR and software photogrammetric

techniques, are established sources for dense point-cloud

collection. The dense point-cloud data sources can be

fused from low-flying aerial platforms, ground systems,

or satellite-based multi-spectral sensors. For the present

dataset, a Man-Wearable System (MWS) and a low-

flying drone were leveraged to generate a high-density

point-cloud representation of a real Army training range,

located at Aberdeen Proving Grounds, Maryland.

2.3.1. Drone Data Capture

The U.S. Army Futures Command, Combat Capability

Development Command-Soldier Center (known as the

Simulation and Training Technology Center (STTC))

and IST, in cooperation with a small business, Micro

Aerial Projects, implemented a medium-frame UAS for

high-quality data acquisition. IST assembled, tested, and

instrumented a quad-propeller, semi-autonomous UAS

for rapid data collection that complied with Federal

Aviation Administration Guidelines (Part 107) and

implemented full control over both part source and

traceability of the onboard PixHawk flight controller.

The overriding goal was to collect the highest quality,

georeferenced photos as possible. IST leveraged the

Micro Aerial V-Map system along with the highest

quality camera available at the time, the SONY-A7RII.

The V-Map system, which leveraged Real-Time

Kinematic (RTK) GPS, was used to collect the large

majority of the RW training range. The V-Map system

allows correlation accuracy of 10mm on the horizontal

axis and 15mm on the vertical axis (Micro Aerial

Projects L.L.C. n. d.).

IST flew the UAS at the height of 50 meters, then again

at the height of 40 meters, to collect the imagery in the

focal length of the sensor and lens configuration of the

A7R-II. Each run was flown in orthogonal vectors to

ensure maximum sensor overlap.

2.3.2. Man Wearable System (MWS)

To supplement the drone capture, IST built a man-

wearable photogrammetry system: using the MWS (see

Figure 2), areas that were inaccessible by traditional

drone collection method were able to be collected. The

MWS enabled data collection under low-hanging

canopies, under power lines, and around interiors. The

system auto-triggers the Sony A7R-II camera based on

movement derived from a Pixie RTK GPS. The

percentage of overlap between photos can be entered by

the user into the mobile-computing platform’s display.

Based on the requested overlap, the georeferenced

photos are automatically triggered by the MWS software,

based on the distance trajectory being tracked on the

embedded computer. The MWS was based on a gimbal

and had a jitter-eliminating pendulum and metal-armed

frame to reduce motion blur introduced by normal

walking. The images obtained with the MWS are

georeferenced by recoding the RTK GPS location,

heading, velocity, and time attributes along with the

photographs. Accuracy was improved by including

ground control points to minimise registration and

camera trajectory errors in the post-processing software.

Both PhotoScan and RealityCapture software were used

to generate photogrammetric-derived dense point-clouds

for merging into the dataset provided by the UAS.

Figure 2: The Man Wearable System (MWS) From

Different Angles

2.4. Dense Point Cloud to Polygonal Mesh

Conversion

To visualise point-cloud data in a game engine, the

generated point cloud must be processed into a polygonal

mesh. Unfortunately, the resultant initial mesh can be

extremely dense, leading to very realistic but less

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

4

efficient—terrain (especially on mobile or embedded

training devices). For example, one berm at full

resolution could be represented by over 25,000 triangles,

once converted from a dense point-cloud into a mesh.

Having multiple berms across a terrain would quickly

hinder the framerate.

Typically, the quality of the final model is increased

when beginning with a very dense model and working

down to a low polygon model. As part of the optimisation

process, the full resolution mesh was decimated until an

acceptable balance between polygon count and fidelity

was reached. Textures and normal maps created from the

high-resolution mesh can aid in keeping a visually

realistic model with a low polygon count. Ultimately,

decimating in a stepwise fashion (e.g. decimating by 10%

five times, instead of 50% one time) was found to

produce a higher quality and more accurate decimated

mesh. There are times that the high-resolution mesh

needs to be re-topologised to allow for a quality

decimation process; this is especially true if you have

parts of a mesh that need to move, such as a door or a

person’s facial features. Sometimes the UVs (or two-

dimensional texture coordinates) require manual

modification in an external program, such as Photoshop.

2.5. Terrain Vs. Game Object Vs. Game Object

Modelisation

Based on the desired use case, there are technical

limitations to consider when trying to develop the high-

fidelity environments needed for live training. Even

though our data collection process allowed us to create

an extremely detailed mesh that represents the real world

very well, using all of that data in a training system is not

realistic, because of computer performance implications.

Therefore, a design choice includes replacing mesh

objects (e.g., trees, buildings, vehicles), which were

generated from point-clouds of the RW, with similar

highly-optimised models. Ideally, a system could learn

and recognise objects using RW data, find the best object

replacement from a catalogue of optimised models, and

place-and-fit the model correctly. These optimised

models would fall somewhere between geotypical and

geospecific, and would thus be geospecifical. This novel

system would learn-and-classify streamed RW data, and

then populate a training environment with highly

optimised geospecifical models that closely match the

RW data. This system would allow for the rapid creation

of high-fidelity environments that are optimised to run on

training devices.

2.6. Essential Model Training

A deep learning model was built to detect berms in the

SNE automatically. For deep learning, the berms in the

SNE were tagged and localised in order to build a dataset

of ground-truth berms. Within Unity, berms were tagged

with the berm class name and a game-object bounding

box: an automated training session captured images of

these objects at several different positions. Since the end

application necessitated aerial detection of these objects,

our training session captured dataset images from an

aerial view. Ground-truth labels were also generated by

calculating the image coordinates from the game objects’

world coordinates.

After the SNE dataset was generated, the dataset was

segmented into training, validation, and testing subsets:

the percentage splits were 60:20:20 over a dataset of

267,300 images. The segmentation was used to provide

datasets from the same domain that could be used for

testing, validation, and training of the model. This

segmentation prevents the model from being tested on

images from which the model was originally trained. If a

model is both trained and tested on the same dataset, then

the model would be influenced to memorise the dataset.

A secondary dataset, which removed all game-object

models from the scene, was also generated in order to

identify any influence stemming from the additionally

placed models.

The next step was to train the deep neural network model.

In this case, the You Only Look Once (YOLOV3) model

proved best, due to both its end-to-end network and its

speed during inference. The model was trained using

standard hyper-parameters provided in the YOLOV3-

608 network configuration. Afterwards, the learned

weights were visually tested for accuracy (see Figures 3

and 4 for an example of the detection). The findings

suggested weights trained after 20,000 iterations

provided reasonable results.

Figure 3: Example of Trained Model Output Detection

The selected weights were then evaluated on the testing

subset of the generated dataset. The measure of

performance of our model was determined through a

precision-versus-recall curve. Precision indicates the

ratio of correct detections as compared to total

detections. Recall indicates the ratio of correct detections

as compared to the total possible correct labels. Both

precision and recall are functions of the intersection-

over-union and a prediction-confidence threshold

calculation. The intersection-over-union is the

percentage of our two bounding boxes’ (i.e., the ground-

truth bounding box and the predicted bounding box)

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

5

overlap, over the total shared area. The resulting model’s

behaviour can be determined by plotting the results of

precision and recall, as the intersection-over-union

threshold is changed. The change in the threshold

illustrates the design decision of requiring high precision,

versus requiring more inclusivity, when using our trained

model.

Figure 4: Example of Trained Model Output Detection

3. RESULTS

3.1. Precision and Recall Results

Figure 5 describes the behaviour of the trained model in

terms of precision and recall for several trained weights

when evaluated on a test dataset. The trained weights are

labelled by the number of epochs of training that had

occurred.

Figure 5: Graph of Precision and Recall, Showing

Success of Deep Learning Algorithm

The 20,000 weight curve shows a model behaviour with

a precision maximum of 0.98, but a corresponding recall

of 0.45. The average precision of the 20,000 weight curve

is 0.825. Conversely, the 90,000 weight curve produces

maximum recall values of 0.81, but has a corresponding

precision of 0.85. The average precision of the 90,000

weight curve is 0.833.

For a balanced approach, we can see that 20,000, 60,000,

80,000, and 90,000 weights produce precision values of

approximately 0.90 and recall values of approximately

0.78 at a prediction threshold value of 0.99.

The secondary dataset results are in line with the results,

as mentioned earlier. The 20,000 weight curve reveals a

maximum precision of 0.98 and recall of 0.45 for a

threshold value of 0.99. The 90,000 weight curve shows

a maximum recall of 0.81 and precision of 0.85. This

shows a nearly identical relation to the above dataset’s

results.

3.2. Analysis of Results

The questions of which weight to use in the final model

will be dependent on the inference dataset that will be

seen. As the inference dataset moves further away from

our training domain, we would use a less-trained model

to have a greater generalisation property.

Given our current test set, our results indicate that further

training may not produce any statistically significant

benefits; this idea is backed by a calculated standard

deviation of 0.047 for precision and 0.067 for recall

across all reported weights.

We can also see that model precision and recall values

seem to be oscillating as the weights increase. This might

be indicative of a local or a global minima within our

inherent model distribution function. If this is, in fact, a

local minima, further training with a larger learning rate

may help escape this issue. Any further model

performance increase will need to stem from training,

tuning, or dataset augmentation. If this is due to a global

minima, then overall changes, such as an expanded or

augmented dataset, or a new model, would need to be

implemented in order to provide a tangible performance

difference.

The values of precision and recall are not unexpected,

considering how the domain distance of the training,

validation, and testing sets are small; and how YOLOV3-

608 reported a mean average precision score of 0.579

when tested on the MS-COCO dataset. Since we are

focusing on a single object, as opposed to the eighty

classes in the MS-COCO dataset, we can expect to see an

increase in average precision over the reported results.

Our secondary dataset produced nearly identical

precision-recall curves to the initial dataset. The

difference between the two are not statistically

significant and can be attributed to the stochastic nature

of training the model and the differences in the dataset.

We can safely conclude that the additions of vegetation

and building models did not significantly contribute to

the performance of our model.

The performance of the model indicates that

classification on images collected from a SNE can be

used to provide accurate detection of terrain objects.

This, in turn, provides a feasibility confirmation for

applications reliant on the object detection of these

terrain objects. Our reported level of recall is reasonable

for applications that require total coverage of objects of

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

6

interest. Also, the level of precision supports applications

that require exact detections.

4. DISCUSSION

The goal of this work was to examine the potential

capabilities of deep learning object detection on the

terrain domain. The object class selected for the detection

task is one that may prove difficult due to its similarity to

surrounding terrain and rocky surfaces. As we can see in

Figure 6, our trained model may not always correctly

identify the berm object.

As we can see from our analysis, our model performance

can provide fairly accurate detections through the use of

a simple data collection session. Given the success and

difficulty of this class’s detection, we can expect to

expand to other more distinctive classes with reasonable

success. This work is intended to lay the groundwork for

future terrain generation applications that can scale to

hundreds, if not thousands, of classes with little

additional manual effort and with competitive

performance, regardless of need.

Figure 6: Example of False Positive Detection

5. CONCLUSION

Training simulations may benefit from realistic SNEs;

yet effectively and efficiently creating these

environments to match the RW has been a challenge. In

this paper, a current terrain import limitation of the Unity

game engine was discussed, as well as an in-progress

solution. Additionally, this paper used a deep learning

algorithm to support the automated re-creation, or

reconstruction, of RW environments. Ultimately, the

results suggest that the methodology of applying a

combination of photogrammetry and 3D scanning can

generate a high-fidelity SNE that can then be used to

accurately train a deep learning object detection model to

populate the said environment with detected classes. This

pipeline can be scaled to hold several more classes and

cut the cost of labour for high-fidelity SNE generation.

5.1. Limitations

The largest hurdle with the present methodology is the

initial model training. To create the final model, one must

first train the model with classes of interest. This requires

an initial identification and data-capture process in the

SNE. After the model is trained on the captured data, the

model can then be used to infer on a production dataset.

This can be mitigated and pre-trained for common terrain

objects, such as trees, flowers, and berms; but more

specialised classes may require additional training.

The training process usually requires a large number of

images per classes for accurate detection. This process

can also be reduced by training on top of our pre-trained

model, and by data augmentation techniques, such as

rotations, which can be integrated into the data capture

session. Future research into other one-shot learning

techniques can further reduce the impact of this issue.

After the model has been trained and provided

detections, the issue of the dataset’s domain can arise.

For example, if we train based on berms in a grassy field,

and then infer on berms in a snowfield, we can expect a

decrease in performance. This is an issue intrinsic to any

model: the model will predict based only on what it has

seen. The main solution to this issue is to provide a

continuous training pipeline to teach the model whenever

it encounters new data, predicts false positives, or

predicts false negatives. Rough estimation techniques

and dataset tools can help human annotators identify

these issues. Future research into adversarial networks or

actor-critic networks can potentially lead to solutions that

ease or replace the human labour of this issue.

Consideration of ill-intentioned individuals in the

military domain is a requirement when researching

technologies that will be heavily relied on. The act of

intentionally fooling a neural network is an active area of

research and growing security concerns. YOLOV2 was

shown to be susceptible to an adversarial attack (Thys,

Van Ranst, and Goedemé 2019). These sorts of attacks

are difficult to predict and respond to. This problem is a

special case of a model receiving never-before-seen data

and not predicting the correct response. The solution to

this has been to provide data of the false positives and

false negatives or to tune the model’s level of

discrimination through the allowable thresholding.

5.2. Future Research

As a next step, choosing the appropriate form of a

machine-learning algorithm will be valuable; one variant

of machine learning to investigate is one-shot learning.

The one-shot learning technique in machine learning is

used to quickly train a model on a new class using only a

few training images. The difficulty of this method comes

from the model’s inability to reflect on past-learnt classes

and find similarities to new classes, in order to rapidly

learn. The adoption and research of this technique can

help scale models to new classes greatly.

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

7

The present experiment focused on testing the training

and classification of one type of feature: a berm. Given

the diversity of RW environments, a larger range of class

types should be considered in future deep learning train-

and-test paradigms.

In conjunction, if game engines in military training are to

become accepted as valuable in terrain reconstruction,

building advantage profiles per each system (e.g., Unity,

Unreal, and CryEngine) is desired: defining which game

engines are most effective and efficient at building SNEs

should be considered.

Further, IST is developing a method to allow direct

import of 3D mesh files (e.g., OBJ and FBX) to be

losslessly reinterpreted as native Unity terrain (see

Figure 7). This solution eliminates the need to use a 16-

bit depth heightmap. While not fully mature, this solution

deserves further research.

Figure 7: Screenshot of the Unity Terrain Importer

ACKNOWLEDGMENTS

This research was sponsored by Latika (Bonnie) Eifert of

the U.S. Army Futures Command, Combat Capabilities

Development Command-Soldier Center Simulation and

Training Technologies Center (STTC). However, the

views, findings, and conclusions contained in this

presentation are solely those of the authors and should

not be interpreted as representing the official policies,

either expressed or implied, of the U.S. Government.

REFERENCES

Baker T., 2018. VBS3 Resource. Milgaming website.

Available from:

https://milgaming.army.mil/VBS3/files/ResourceL

ist.aspx [accessed 14 Mar 2019].

Chen Y., Jiang H., Li C., Jia X., Ghamisi P. , 2016. Deep

feature extraction and classification of

hyperspectral images based on convolutional neural

networks. IEEE Transactions on Geoscience and

Remote Sensing, 54 (10), 6232-6251.

Kemker R., Salvaggio C., Kanan, C., 2018. Algorithms

for semantic segmentation of multispectral remote

sensing imagery using deep learning. ISPRS

Journal of Photogrammetry and Remote

Sensing, 145, 60-77.

Micro Aerial Projects L.L.C., n. d. V-map AIR 20Hz

GNSS receiver technical specifications. Micro

Aerial Projects L.L.C.

PEO STRI, n.d. Virtual targets. PEO STRI website.

Available from:

https://www.peostri.army.mil/virtual-targets

[accessed 14 May 2019]

Reed D., Thomas T., Eifert L., Reynolds S., Hurter J.,

Tucker F., 2018. Leveraging virtual environments

to train a deep learning algorithm. Proceedings of

the 17th International Conference on Modeling and

Applied Simulation (MAS 2018), September 17-

19, Budapest (Hungary).

Spicer R., McAlinden R., Conover D., 2016. Producing

usable simulation terrain data from UAS-collected

imagery. Proceedings of the Interservice/Industry

Training, Simulation, and Education Conference

(I/ITSEC), pp. 1-13.

Tchou C., 2018. 2018.3 terrain update: Getting started.

Unity Blog. Available from:

https://blogs.unity3d.com/2018/10/10/2018-3-

terrain-update-getting-started/ [accessed 10 May

2019]

Thys, S., Van Ranst, W., & Goedemé, T. 2019. Fooling

automated surveillance cameras: adversarial

patches to attack person detection. arXiv preprint

arXiv:1904.08653.

Zhang L., Li Z., Li A., Liu F., 2018. Large-scale urban

point cloud labeling and reconstruction. ISPRS

Journal of Photogrammetry and Remote

Sensing, 138, 86-100.

AUTHORS BIOGRAPHY

Dean Reed (B.S. in Computer Science, UCF 2000) is a

Senior Associate for Simulation with the Institute for

Simulation and Training (IST) of the University of

Central Florida. Mr Reed is a veteran of the U.S. Army

and leads a team of developers at IST. He has worked on

a vast array of projects under the auspices of the

University, including NASA Vision Spaceport. He is

currently managing team efforts directed at evolving

future training ranges on behalf of the U.S. Army.

Troyle Thomas (M.S. in Computer Science, UCF 2018)

is an Assistant in Simulation with the Institute for

Simulation and Training (IST) of the University of

Central Florida. His research interests include computer

vision, natural language processing and

machine learning applications, with particular attention

to unsupervised learning methods. Mr Thomas has been

at the Institute for Simulation and Training since 2017.

His primary responsibilities involve the research of

artificial intelligence techniques, with a primary focus on

deep learning, and their application to the virtual

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

8

https://milgaming.army.mil/VBS3/files/ResourceList.aspx
https://milgaming.army.mil/VBS3/files/ResourceList.aspx
https://www.peostri.army.mil/virtual-targets
https://blogs.unity3d.com/2018/10/10/2018-3-terrain-update-getting-started/
https://blogs.unity3d.com/2018/10/10/2018-3-terrain-update-getting-started/

environment, embedded environments and interactive

training.

Shane Reynolds is a graduate of UCF in Digital Media.

He has specialised in compelling 3D content

development and mobile game engine development for

over ten years. Mr Reynolds is a veteran of the U.S. Air

Force. Shane is a Research Associate at the Institute for

Simulation and Training where he has been a faculty

member since 2008. His primary activities involve

research and integration of modern technologies to train

dismounted Soldiers at the squad level. Currently, his

focal areas are technologies involving virtual reality,

augmented reality, and photogrammetry.

Jonathan Hurter is a Research Assistant at the

University of Central Florida’s (UCF’s) Institute for

Simulation and Training (IST). Holding a Master’s

degree in Modeling & Simulation from UCF, Jonathan

has worked with human-based research topics, including

the relation of avatars with performance, the usability of

virtual reality systems, and the effects of instructional

strategies for signal detection. His efforts fall under

instructional design and technical communication,

mainly.

Latika (Bonnie) Eifert (M.S. in Computer Engineering,

UCF 2003) is a Science and Technology Manager at the

U.S. Army Research, Development and Engineering

Command (RDECOM), Army Research Laboratory,

Human Research Engineering Directorate, Simulation

and Training Technology Center (ARL-HRED ATSD)

located in Orlando, Florida. Ms Eifert manages several

projects associated with simulation and training. She is

also supporting the Defense Advanced Research Project

Agency (DARPA) by managing research program

efforts.

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

9

