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ABSTRACT 

The aim of rapidly reconstructing high-fidelity, Synthetic 

Natural Environments (SNEs) may benefit from a deep 

learning algorithm: this paper explores how deep 

learning on virtual, or synthetic, terrain assets of aerial 

imagery can support the process of quickly and 

effectively recreating lifelike SNEs for military training, 

including serious games. Namely, a deep learning 

algorithm was trained on small hills, or berms, from a 

SNE, derived from real-world geospatial data. In turn, 

the deep learning algorithm’s level of classification was 

tested. Then, assets learned (i.e., classified) from the 

deep learning were transferred to a game engine for 

reconstruction. Ultimately, results suggest that deep 

learning will support automated population of high-

fidelity SNEs. Additionally, we identify constraints and 

possible solutions when utilising the commercial game 

engine of Unity for dynamic terrain generation.  

Keywords: synthetic natural environment, live military 

training, deep learning, simulation fidelity 

1. INTRODUCTION

For positive training transfer to occur in a military 

simulation, the highest possible representation of the 

natural terrain must be achieved. To exemplify the train-

as-we-fight mantra, any scenario represented by game 

engines needs a high, consistent correlation with the Real 

World (RW). The effective-and-efficient creation of 

terrain that meets accuracy requirements for live (such as 

augmented) military training environments continues to 

be a significant challenge. Thus, the purpose of this paper 

is to aid in the rapid reconstruction of Synthetic Natural 

Environments (SNEs) for training, by simultaneously 

maintaining both effectiveness (i.e., high fidelity) of the 

final environment and efficiency (i.e., a low amount of 

resources) within the reconstruction process. To reach 

this purpose, the first-tier goal of the paper is multifold: 

to test the classification accuracy of a deep learning 

algorithm trained on a SNE, and test the subsequent 

reconstruction of a SNE based off the classification from 

the deep learning algorithm. A second-tier goal is to 

identify constraints in a game engine’s terrain generation 

process, as lessons learned for future research. 

1.1. Related Work 

Representing RW or geo-specific training regions to a 

very high degree of RW correlation, while maintaining 

cost-effectiveness, has been elusive. In one method, 

scenario environments can be painstakingly built by 

artists—reducing efficiency and introducing a potential 

human-error confound to effectiveness. Some alternate 

solutions have been proposed: one example is the 

automatic generation of terrain from aerial 

photogrammetry (Spicer, McAlinden, and Conover 

2016). With the advent of low-cost and highly-reliable 

drone platforms, obtaining dense point-cloud data from 

either photogrammetric or LiDAR sources has become 

commonplace. However, processing the dense point 

cloud into usable and efficient polygonal, game-engine-

based geospecific regions of sufficient geographic size to 

perform on-going mission training remains a challenge. 

One issue is the high-resolution automatic classification 

of different features (e.g., capturing the distinction 

between human-made structures and natural terrain). We 

distinguish this high-resolution classification from the 

traditional coarse-grain approach of Digital Terrain 

Model (DTM) and Digital Surface Model (DSM) 

methods commonly provided by Commercial-Off-The-

Shelf (COTS) software tools. Furthermore, injection of 

numerous raw or coarse point-cloud-derived polygonal 

models into the game-engine-based rendering system is 

both inefficient and distracting for the trainee.  

The U.S. Army’s One World Terrain (OWT) program is 

a large program attempting to solve these terrain-related 

issues. The goal of OWT is to provide foundational, 

attributed 3D data to runtime publishers (i.e. consumers) 

that is well-formed and consumable at the Point-Of-Need 

(PON). OWT will contain polygonal mesh OBJ data and 

a traditional-gridded CDB standard (e.g. elevation grids, 

imagery, and vectors). OWT data should be viewable and 

editable with no proprietary tools required. OWT will 

leverage Open Geospatial Consortium (OGC) CDB to 

add rigour, structure, attribution and determinism to OBJ 

files. Nevertheless, machine learning (via a deep neural 

network) to classify and reconstruct objects from aerial 

imagery point clouds has been introduced (Zhang, Li, Li 

& Liu, 2018). Although the latter avenue of work 

supplies a classification process, it is limited by training 
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a deep learning algorithm through non-virtual data, 

which is a problematic method from the vantage of 

efficiency.  

In the advancement of machine learning, previous 

research suggests the value (in terms of efficiency and 

effectiveness) of using virtual, or synthetic, imagery 

datasets to train object classification of RW imagery: a 

deep learning algorithm was successfully tested for 

classification after training on a virtual military helmet 

(Reed, Thomas, Eifert, Reynolds, Hurter, and Tucker 

2018). Although virtual assets have been used to help 

pre-train for aerial images (Kemker, Salvaggio, and 

Kanan 2018), or enhance the training process (Chen, 

Jiang, Li, Jia, and Ghamisi 2016), it is unclear how 

virtual assets would fair as an exclusive training set for 

aerial images. Ultimately, the present paper investigates 

how the artificial-intelligence technique of deep learning 

can be leveraged to alleviate the burden of having to 

populate repetitive, but critical, terrain features in a SNE. 

We also identify and explore shortcomings in the Unity 

game engine as used to render SNEs.  

1.2. Solution Space 

The proposed solution for SNE reconstruction is to 

leverage deep learning to help classify features of an 

environment; in turn, the classified features can then be 

utilised to populate a SNE with virtual models and 

textures rapidly. The focus of this paper’s initial test is 

the classification of berms or small hills (see Figure 1) 

found in a SNE. For streamlining, the solution is directed 

at training the deep learning algorithm using virtual, 

rather than RW, imagery data.  

Figure 1: Example of a Berm in a Synthetic Natural 

Environment (SNE; Image Contrast Increased for 

Presentation) 

One can train a deep learning algorithm to classify geo-

specific features from aerial imagery. Once features are 

learned, one may inject matched features with a high 

degree of accuracy into the SNE. Given how large 

defence organisations generally have a preexisting set of 

high-quality terrain models, which are used to populate 

geotypical and geospecific SNEs, deep learning serves as 

a bridge to support automatic modelisation of simulated 

military environments. Specifically, the U.S. Army has a 

large resource of assets: with a large set of Synthetic 

Environment (SE)-Core 3D models library called the 

common models, the Army can access Games for 

Training assets (e.g., the Virtual Battlespace game 

engine or the Army Model Repository; PEO STRI n.d.; 

Baker 2018). The availability of thousands of 3D models 

is beneficial for training deep learning algorithms, since 

these 3D models are existing assets usable for AI training 

material. This process differs from performing very 

expensive data collection of RW imagery. 

Another linchpin of the solution is the capabilities of 

game engines. Commercial game engines, such as Unity, 

offer advanced features for rendering high-quality, 

natural-looking environments. Thus, game engines 

provide an apt tool to maintain ecological validity for 

various military tasks, due to the possibility of high 

fidelity afforded. However, a restriction arises with game 

engines: although some engines support the import of 

dense point-cloud data directly for small regions, the 

same process does not lend itself to efficient rendering 

over larger areas. Additionally, native dense point-clouds 

will inherently contain surface inaccuracies from the 

source sensor that causes the data to be unusable for 

traditional simulation. These game engine limitations 

underscore the need for a more efficient process for 

large-scale SNE development.     

The foreseen reconstruction solution would ideally be 

routine for an Unmanned Aerial System (UAS), or drone. 

Once a deep learning system is trained, a UAS could 

collect data in the form of photos or LiDAR data, 

represented by a 3D point cloud. Based on the models 

derived from the point cloud, features would be 

identified, classified, and then mapped to a terrain object. 

Once an area is appropriately classified by the deep 

learning algorithm, it can be seamlessly imported into a 

game engine, such as Unity.  

2. METHODOLOGY

Before detailing the experimental procedure, the second-

tier goal of this paper will be covered: the constraints 

confronted (and solutions found) when attempting to use 

Unity for dynamic terrain generation. 

2.1. Challenges in Unity 

Virtual environment developers have a decision to make 

when deciding on how to implement terrain: in Unity, 

one option would be to use the built-in terrain editor, 

whereas another option would be to import a polygonal 

mesh from another tool. In Unity’s 2018.3.8.f1 release 

(Tchou 2018), updated terrain implementation supports 

seamless operations between multiple co-located terrain 

tiles. The native Unity terrain implementation is 

beneficial, as it allows designers to quickly add content 

to terrain by applying terrain brushes that paint 

geotypical content on top of terrain tiles. Another benefit 

of Unity’s native terrain is the relative efficiency of how 

repeated objects are rendered at runtime. Native 

implementations of objects, such as trees that are directly 

handled en masse (in contrast to individually-placed 

game objects) leads to superior handling in the draw 

cycle and better overall performance.  

Proceedings of the International Defence and Homeland Security Simulation Workshop 2019
ISBN 978-88-85741-33-1; Bruzzone and Sottilare Eds.

2



An internal preliminary experiment tested the 

implementation of native Unity terrain trees (i.e., terrain 

objects) versus individual trees placed as game objects. 

An individual, traditional 3D tree model was created with 

three levels of detail. Using the Unity terrain tool, 13,000 

trees were painted over a single terrain tile. We then 

repeated the test but used game objects instead of a 

traditional 3D model, and placed them at the exact 

location of each tree in the first test. Locations of the trees 

were determined by the treeInstances method of the 

TerrainData Unity object. The Frames-Per-Second 

(FPS), or framerate, measurements were provided by the 

FRAPS program. A PC with a dual video card was used 

to perform this test, with consistent specifications (see 

Table 1). 

Table 1: Testbed Specifications 

CPU Intel Core i7-5960X 

Memory 32GB 

OS Windows 10 Enterprise 

GPU 2x NVidia GeForce GTX 980 Ti 

Ultimately, the native terrain condition used less memory 

and rendered more efficiently than the game object 

approach (see Table 2).  

Table 2: Terrain Objects Vs. Game Objects, Tree 

Models 

Object Type Memory FPS CPU 

Native Terrain 15% 36 6.6% 

Game Object 16% 33 12.7% 

As the results show, using the Unity terrain system to 

manage the tree models is more efficient, with respect to 

computer resources, and provides superior rendering 

performance.  

Despite the Unity game engine’s beneficial aspects 

within the terrain editor, various challenges inherent in 

using the native Unity terrain processes were found. 

These issues altered the final methodology used, and are 

discussed here as part of the methodological rationale. 

Ultimately, these choices may inform future research 

when considering the value of Unity’s impact on serious 

military games.  

Originally, a detail-mesh placement-map system was 

tested, where pixel data (in the form of RGB values) 

corresponded to different mesh objects. When placing 

terrain objects, manually setting the rotation of objects 

was unsupported. The system lacked the option for 

correcting the direction objects faced, on a per-object 

basis. However, the objects could be instructed to face 

the camera consistently (i.e., an option for billboarding 

existed). Further, the scaling of mesh objects was 

limited; this is a fundamental difference between 

injecting native terrain features and injecting 

representative game objects into an environment: 

typically, a game object can be used repeatedly with 

various scales. In contrast, Unity’s native terrain-feature 

scales are set uniformly, breeding inefficiency: to 

account for scale variations of terrain, different-size 

versions of the same object would be needed, in turn 

requiring multiple maps. Another crucial control issue 

with the aforementioned map process was the non-

deterministic placement of models: when an identical 

map was reloaded, the locations of models were not 

necessarily identical to the previous load. A similar non-

deterministic issue involved the terrain brush settings for 

painting pixels on the map, due to the inability to 

consistently equate one model to one pixel. If the brush 

size was too large, multiple objects were placed; but if 

the size was too small, there was a chance no objects 

would be placed. Further errors may also be caused here 

if a user changed the settings on detail resolution. 

Another issue within the map used was the lack of 

collision between objects. The lack of collisions is 

problematic since it reduces the fidelity of the 

environment: although the visuals may look real, they 

would not function realistically. For example, an avatar 

could walk through a berm or shoot a bullet through a 

berm; this defeats the purpose of the current project’s 

goal (at least for some types of ground-based training). 

The detail-map size must also be consistent with the 

terrain size: if the sizes did not match, the terrain system 

would attempt to rescale the map, which skewed the 

placement of an object. Finally, there was a limit of 

objects allowed to be placed into a patch (i.e., an area of 

terrain) in Unity. It appears an upper-limit was based on 

vertices; given our terrain settings, this was an issue.   

A limiter of fidelity was also calculated for the Unity 

environments. The most common way to attribute height 

vertices is to import a grayscale heightmap that 

represents individual heights of the terrain as a two-

dimensional array of 16-bit grayscale values. This means 

that a single terrain tile can have a maximum 

representative range of 216 or 65,536 discrete values at 

any one location in the 2D array. Current 

implementations of Unity support a maximum density of 

4,096+1 for the heightmap. This limitation means that 

any grayscale-based terrain region represented by 

Unity’s system must fit within this restriction. Selecting 

our terrain’s ideal resolution to be of 1cm quality for each 

of our possible grayscale values, we find that our lowest-

to-highest range spans a maximum distance of 655.36m 

for a single terrain tile. If we are representing an urban, 

fairly flat environment, this limitation is less concerning. 

Representing hilly, or excessively rugged terrain would 

require subdividing the tiles into very small segments. 

We summarise the relationship between desired game 

engine representation, in terms of representation fidelity 

of the terrain, as: 

𝐸𝑑 =
𝐹

216  (1) 

𝑀𝑎 =   (4,097𝐹)2  (2) 

In equation (1) 𝐸𝑑 is the elevation delta with the fidelity 

of 𝐹. Equation (2) shows the relationship between the 

maximum area, Ma, and the desired fidelity of 

representing the area expressed as a function of the 
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maximum Unity grayscale heightmap and the desired 

representational fidelity. Overall, the limitation of the 16-

bit representation of depth and 4,097*4,097 resolution 

limitation can be constraining when attempting to 

preserve the highest possible RW representation within 

the game engine. The University of Central Florida 

Institute for Simulation and Training (or simply, IST) has 

begun implementation of a Unity terrain importer 

capable of preserving the original sensor fidelity. The 

importer bridges the gap between traditional geospatial 

source data and Unity terrain objects. The importer 

ingests 3D formats generally associated with 3D models 

(including OBJ, FBX, and DAE), which are then 

translated into the native Unity terrain tiles.  

2.2. Experimental Procedure Summary 

The overall procedure for the experiment followed a 

linear, stepwise process: 

1. The physical data of the RW environment were

collected via images.

2. The physical data of the RW environment were used

to generate a point cloud.

3. The point cloud was converted to polygonal meshes.

4. The polygonal meshes were imported into the Unity

game engine as part of a SNE.

5. The SNE, as a section, was used as training fodder

for a deep learning model.

6. The deep learning model’s decisions were used to

infer and place game objects into the remaining

section of the SNE.

2.3. Data Collection Process 

Sensors, such as LiDAR and software photogrammetric 

techniques, are established sources for dense point-cloud 

collection. The dense point-cloud data sources can be 

fused from low-flying aerial platforms, ground systems, 

or satellite-based multi-spectral sensors. For the present 

dataset, a Man-Wearable System (MWS) and a low-

flying drone were leveraged to generate a high-density 

point-cloud representation of a real Army training range, 

located at Aberdeen Proving Grounds, Maryland.  

2.3.1. Drone Data Capture 

The U.S. Army Futures Command, Combat Capability 

Development Command-Soldier Center (known as the 

Simulation and Training Technology Center (STTC)) 

and IST, in cooperation with a small business, Micro 

Aerial Projects, implemented a medium-frame UAS for 

high-quality data acquisition. IST assembled, tested, and 

instrumented a quad-propeller, semi-autonomous UAS 

for rapid data collection that complied with Federal 

Aviation Administration Guidelines (Part 107) and 

implemented full control over both part source and 

traceability of the onboard PixHawk flight controller. 

The overriding goal was to collect the highest quality, 

georeferenced photos as possible. IST leveraged the 

Micro Aerial V-Map system along with the highest 

quality camera available at the time, the SONY-A7RII. 

The V-Map system, which leveraged Real-Time 

Kinematic (RTK) GPS, was used to collect the large 

majority of the RW training range. The V-Map system 

allows correlation accuracy of 10mm on the horizontal 

axis and 15mm on the vertical axis (Micro Aerial 

Projects L.L.C. n. d.).  

IST flew the UAS at the height of 50 meters, then again 

at the height of 40 meters, to collect the imagery in the 

focal length of the sensor and lens configuration of the 

A7R-II. Each run was flown in orthogonal vectors to 

ensure maximum sensor overlap.     

2.3.2. Man Wearable System (MWS) 

To supplement the drone capture, IST built a man-

wearable photogrammetry system: using the MWS (see 

Figure 2), areas that were inaccessible by traditional 

drone collection method were able to be collected. The 

MWS enabled data collection under low-hanging 

canopies, under power lines, and around interiors. The 

system auto-triggers the Sony A7R-II camera based on 

movement derived from a Pixie RTK GPS. The 

percentage of overlap between photos can be entered by 

the user into the mobile-computing platform’s display. 

Based on the requested overlap, the georeferenced 

photos are automatically triggered by the MWS software, 

based on the distance trajectory being tracked on the 

embedded computer. The MWS was based on a gimbal 

and had a jitter-eliminating pendulum and metal-armed 

frame to reduce motion blur introduced by normal 

walking. The images obtained with the MWS are 

georeferenced by recoding the RTK GPS location, 

heading, velocity, and time attributes along with the 

photographs. Accuracy was improved by including 

ground control points to minimise registration and 

camera trajectory errors in the post-processing software. 

Both PhotoScan and RealityCapture software were used 

to generate photogrammetric-derived dense point-clouds 

for merging into the dataset provided by the UAS.  

Figure 2: The Man Wearable System (MWS) From 

Different Angles 

2.4. Dense Point Cloud to Polygonal Mesh 

Conversion 

To visualise point-cloud data in a game engine, the 

generated point cloud must be processed into a polygonal 

mesh. Unfortunately, the resultant initial mesh can be 

extremely dense, leading to very realistic but less 
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efficient—terrain (especially on mobile or embedded 

training devices). For example, one berm at full 

resolution could be represented by over 25,000 triangles, 

once converted from a dense point-cloud into a mesh. 

Having multiple berms across a terrain would quickly 

hinder the framerate.  

Typically, the quality of the final model is increased 

when beginning with a very dense model and working 

down to a low polygon model. As part of the optimisation 

process, the full resolution mesh was decimated until an 

acceptable balance between polygon count and fidelity 

was reached. Textures and normal maps created from the 

high-resolution mesh can aid in keeping a visually 

realistic model with a low polygon count. Ultimately, 

decimating in a stepwise fashion (e.g. decimating by 10% 

five times, instead of 50% one time) was found to 

produce a higher quality and more accurate decimated 

mesh. There are times that the high-resolution mesh 

needs to be re-topologised to allow for a quality 

decimation process; this is especially true if you have 

parts of a mesh that need to move, such as a door or a 

person’s facial features. Sometimes the UVs (or two-

dimensional texture coordinates) require manual 

modification in an external program, such as Photoshop. 

2.5. Terrain Vs. Game Object Vs. Game Object 

Modelisation 

Based on the desired use case, there are technical 

limitations to consider when trying to develop the high-

fidelity environments needed for live training. Even 

though our data collection process allowed us to create 

an extremely detailed mesh that represents the real world 

very well, using all of that data in a training system is not 

realistic, because of computer performance implications. 

Therefore, a design choice includes replacing mesh 

objects (e.g., trees, buildings, vehicles), which were 

generated from point-clouds of the RW, with similar 

highly-optimised models. Ideally, a system could learn 

and recognise objects using RW data, find the best object 

replacement from a catalogue of optimised models, and 

place-and-fit the model correctly. These optimised 

models would fall somewhere between geotypical and 

geospecific, and would thus be geospecifical. This novel 

system would learn-and-classify streamed RW data, and 

then populate a training environment with highly 

optimised geospecifical models that closely match the 

RW data. This system would allow for the rapid creation 

of high-fidelity environments that are optimised to run on 

training devices.  

2.6. Essential Model Training 

A deep learning model was built to detect berms in the 

SNE automatically. For deep learning, the berms in the 

SNE were tagged and localised in order to build a dataset 

of ground-truth berms. Within Unity, berms were tagged 

with the berm class name and a game-object bounding 

box: an automated training session captured images of 

these objects at several different positions. Since the end 

application necessitated aerial detection of these objects, 

our training session captured dataset images from an 

aerial view. Ground-truth labels were also generated by 

calculating the image coordinates from the game objects’ 

world coordinates. 

After the SNE dataset was generated, the dataset was 

segmented into training, validation, and testing subsets: 

the percentage splits were 60:20:20 over a dataset of 

267,300 images. The segmentation was used to provide 

datasets from the same domain that could be used for 

testing, validation, and training of the model. This 

segmentation prevents the model from being tested on 

images from which the model was originally trained. If a 

model is both trained and tested on the same dataset, then 

the model would be influenced to memorise the dataset.  

A secondary dataset, which removed all game-object 

models from the scene, was also generated in order to 

identify any influence stemming from the additionally 

placed models. 

The next step was to train the deep neural network model. 

In this case, the You Only Look Once (YOLOV3) model 

proved best, due to both its end-to-end network and its 

speed during inference. The model was trained using 

standard hyper-parameters provided in the YOLOV3-

608 network configuration. Afterwards, the learned 

weights were visually tested for accuracy (see Figures 3 

and 4 for an example of the detection). The findings 

suggested weights trained after 20,000 iterations 

provided reasonable results. 

Figure 3: Example of Trained Model Output Detection 

The selected weights were then evaluated on the testing 

subset of the generated dataset. The measure of 

performance of our model was determined through a 

precision-versus-recall curve. Precision indicates the 

ratio of correct detections as compared to total 

detections. Recall indicates the ratio of correct detections 

as compared to the total possible correct labels. Both 

precision and recall are functions of the intersection-

over-union and a prediction-confidence threshold 

calculation. The intersection-over-union is the 

percentage of our two bounding boxes’ (i.e., the ground-

truth bounding box and the predicted bounding box) 
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overlap, over the total shared area. The resulting model’s 

behaviour can be determined by plotting the results of 

precision and recall, as the intersection-over-union 

threshold is changed. The change in the threshold 

illustrates the design decision of requiring high precision, 

versus requiring more inclusivity, when using our trained 

model. 

Figure 4: Example of Trained Model Output Detection 

3. RESULTS

3.1. Precision and Recall Results 

Figure 5 describes the behaviour of the trained model in 

terms of precision and recall for several trained weights 

when evaluated on a test dataset. The trained weights are 

labelled by the number of epochs of training that had 

occurred.  

Figure 5: Graph of Precision and Recall, Showing 

Success of Deep Learning Algorithm 

The 20,000 weight curve shows a model behaviour with 

a precision maximum of 0.98, but a corresponding recall 

of 0.45. The average precision of the 20,000 weight curve 

is 0.825. Conversely, the 90,000 weight curve produces 

maximum recall values of 0.81, but has a corresponding 

precision of 0.85. The average precision of the 90,000 

weight curve is 0.833. 

For a balanced approach, we can see that 20,000, 60,000, 

80,000, and 90,000 weights produce precision values of 

approximately 0.90 and recall values of approximately 

0.78 at a prediction threshold value of 0.99.  

The secondary dataset results are in line with the results, 

as mentioned earlier. The 20,000 weight curve reveals a 

maximum precision of 0.98 and recall of 0.45 for a 

threshold value of 0.99. The 90,000 weight curve shows 

a maximum recall of 0.81 and precision of 0.85. This 

shows a nearly identical relation to the above dataset’s 

results. 

3.2. Analysis of Results 

The questions of which weight to use in the final model 

will be dependent on the inference dataset that will be 

seen. As the inference dataset moves further away from 

our training domain, we would use a less-trained model 

to have a greater generalisation property.  

Given our current test set, our results indicate that further 

training may not produce any statistically significant 

benefits; this idea is backed by a calculated standard 

deviation of 0.047 for precision and 0.067 for recall 

across all reported weights. 

We can also see that model precision and recall values 

seem to be oscillating as the weights increase. This might 

be indicative of a local or a global minima within our 

inherent model distribution function. If this is, in fact, a 

local minima, further training with a larger learning rate 

may help escape this issue. Any further model 

performance increase will need to stem from training, 

tuning, or dataset augmentation. If this is due to a global 

minima, then overall changes, such as an expanded or 

augmented dataset, or a new model, would need to be 

implemented in order to provide a tangible performance 

difference.   

The values of precision and recall are not unexpected, 

considering how the domain distance of the training, 

validation, and testing sets are small; and how YOLOV3-

608 reported a mean average precision score of 0.579 

when tested on the MS-COCO dataset. Since we are 

focusing on a single object, as opposed to the eighty 

classes in the MS-COCO dataset, we can expect to see an 

increase in average precision over the reported results. 

Our secondary dataset produced nearly identical 

precision-recall curves to the initial dataset. The 

difference between the two are not statistically 

significant and can be attributed to the stochastic nature 

of training the model and the differences in the dataset. 

We can safely conclude that the additions of vegetation 

and building models did not significantly contribute to 

the performance of our model. 

The performance of the model indicates that 

classification on images collected from a SNE can be 

used to provide accurate detection of terrain objects. 

This, in turn, provides a feasibility confirmation for 

applications reliant on the object detection of these 

terrain objects. Our reported level of recall is reasonable 

for applications that require total coverage of objects of 
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interest. Also, the level of precision supports applications 

that require exact detections. 

4. DISCUSSION

The goal of this work was to examine the potential 

capabilities of deep learning object detection on the 

terrain domain. The object class selected for the detection 

task is one that may prove difficult due to its similarity to 

surrounding terrain and rocky surfaces. As we can see in 

Figure 6, our trained model may not always correctly 

identify the berm object.  

As we can see from our analysis, our model performance 

can provide fairly accurate detections through the use of 

a simple data collection session. Given the success and 

difficulty of this class’s detection, we can expect to 

expand to other more distinctive classes with reasonable 

success. This work is intended to lay the groundwork for 

future terrain generation applications that can scale to 

hundreds, if not thousands, of classes with little 

additional manual effort and with competitive 

performance, regardless of need. 

Figure 6: Example of False Positive Detection 

5. CONCLUSION

Training simulations may benefit from realistic SNEs; 

yet effectively and efficiently creating these 

environments to match the RW has been a challenge. In 

this paper, a current terrain import limitation of the Unity 

game engine was discussed, as well as an in-progress 

solution. Additionally, this paper used a deep learning 

algorithm to support the automated re-creation, or 

reconstruction, of RW environments. Ultimately, the 

results suggest that the methodology of applying a 

combination of photogrammetry and 3D scanning can 

generate a high-fidelity SNE that can then be used to 

accurately train a deep learning object detection model to 

populate the said environment with detected classes. This 

pipeline can be scaled to hold several more classes and 

cut the cost of labour for high-fidelity SNE generation. 

5.1. Limitations 

The largest hurdle with the present methodology is the 

initial model training. To create the final model, one must 

first train the model with classes of interest. This requires 

an initial identification and data-capture process in the 

SNE. After the model is trained on the captured data, the 

model can then be used to infer on a production dataset. 

This can be mitigated and pre-trained for common terrain 

objects, such as trees, flowers, and berms; but more 

specialised classes may require additional training.  

The training process usually requires a large number of 

images per classes for accurate detection. This process 

can also be reduced by training on top of our pre-trained 

model, and by data augmentation techniques, such as 

rotations, which can be integrated into the data capture 

session. Future research into other one-shot learning 

techniques can further reduce the impact of this issue. 

After the model has been trained and provided 

detections, the issue of the dataset’s domain can arise. 

For example, if we train based on berms in a grassy field, 

and then infer on berms in a snowfield, we can expect a 

decrease in performance. This is an issue intrinsic to any 

model: the model will predict based only on what it has 

seen. The main solution to this issue is to provide a 

continuous training pipeline to teach the model whenever 

it encounters new data, predicts false positives, or 

predicts false negatives. Rough estimation techniques 

and dataset tools can help human annotators identify 

these issues. Future research into adversarial networks or 

actor-critic networks can potentially lead to solutions that 

ease or replace the human labour of this issue.  

Consideration of ill-intentioned individuals in the 

military domain is a requirement when researching 

technologies that will be heavily relied on. The act of 

intentionally fooling a neural network is an active area of 

research and growing security concerns. YOLOV2 was 

shown to be susceptible to an adversarial attack (Thys, 

Van Ranst, and Goedemé 2019). These sorts of attacks 

are difficult to predict and respond to. This problem is a 

special case of a model receiving never-before-seen data 

and not predicting the correct response. The solution to 

this has been to provide data of the false positives and 

false negatives or to tune the model’s level of 

discrimination through the allowable thresholding. 

5.2. Future Research 

As a next step, choosing the appropriate form of a 

machine-learning algorithm will be valuable; one variant 

of machine learning to investigate is one-shot learning. 

The one-shot learning technique in machine learning is 

used to quickly train a model on a new class using only a 

few training images. The difficulty of this method comes 

from the model’s inability to reflect on past-learnt classes 

and find similarities to new classes, in order to rapidly 

learn. The adoption and research of this technique can 

help scale models to new classes greatly. 
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The present experiment focused on testing the training 

and classification of one type of feature: a berm. Given 

the diversity of RW environments, a larger range of class 

types should be considered in future deep learning train-

and-test paradigms. 

In conjunction, if game engines in military training are to 

become accepted as valuable in terrain reconstruction, 

building advantage profiles per each system (e.g., Unity, 

Unreal, and CryEngine) is desired: defining which game 

engines are most effective and efficient at building SNEs 

should be considered. 

Further, IST is developing a method to allow direct 

import of 3D mesh files (e.g., OBJ and FBX) to be 

losslessly reinterpreted as native Unity terrain (see 

Figure 7). This solution eliminates the need to use a 16-

bit depth heightmap. While not fully mature, this solution 

deserves further research. 

Figure 7: Screenshot of the Unity Terrain Importer 
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