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ABSTRACT 
This work proposes the use of Structured Parallel 

Programming using the process communication pattern 

called Pipeline in its version of High-Level Parallel 

Composition (HLPC) to implement a process 

composition that represents a convolutional neuronal 

network or CNN and that is used to solve a specific 

problem of DNA sequences. The HLPC Pipeline-CNN 

is then shown, which represents the implementation of a 

convolutional neural network making use of the three 

types of parallel objects that make up an HLPC: A 

manager object, one or more stage objects and a 

collector object. The manager object represents the 

HLPC itself and makes an encapsulated abstraction out 

of it that hides the internal structure, the stage objects 

are objects of a specific purpose, in charge of 
encapsulating an client-server type interface that settles 
down between the manager and the slave-objects and 

the collector object that is an object in charge of storing 
the results received from the stage objects to which is 
connected. To show the usefulness and performance of 
the HLPC Pipeline-CNN implemented, it was used in 
the recognition of DNA sequences from a database with 
4 types of hepatitis C virus (type 1, 2, 3 and 6). The 
results of this classification were obtained in terms of 
percentages of training precision and validation 
precision, as well as performance results in terms of 
speedup from 1000 to 4000 training steps with 2, 4, 8, 
16 and 32 exclusive processors in one parallel machine 
of up to 64 processors with shared-distributed memory. 

Keywords: High Level Parallel Compositions, HLPC, 
Convolutional Neuronal Network, CNN, Deep Learning 
Transfer, DNA Sequences, Parallel Objects, Structured 
Parallel Programming. 

 
1. INTRODUCTION 
The convolutional neural networks (CNN) are like 
multichannel neural networks, its main advantage is that 
each part of the network is trained to perform a task, 
this significantly reduces the number of hidden layers, 
so training is faster (Calvo 2015). The convolutional 
neural networks are very powerful for everything that 
has to do with the image analysis. However, its use is 
not only restricted to image analysis, it can also be 
applied to the speech recognition, or to the classification 
of sentences, with the necessary transformations 

regarding the type of the input data (Calvo 2015, 
Vizcayab2018). A convolutional neuronal network is a 
multilayer network consisting of alternating 
convolutional and reduction layers, like a pipeline 
architecture (Calvo 2015). In the convolution, 
operations of products and sums are carried out between 
the starting layer and the n filters that a characteristic 
map (matrix) generates. The extracted characteristics 
correspond to each possible location of the filter in the 
original image. The advantage is that the same filter 
(neuron) serves to extract the same characteristic in any 
part of the input, with this it is possible to reduce the 
number of connections and the number of parameters to 
train in comparison with a multilayer network of total 
connection (Calvo 2015, Vizcayab2018). In the 
reduction the number of parameters is reduced by 
staying with the most common characteristics. The last 
layer of this network is a sorting layer that will have as 
many neurons as the number of classes to predict. 
However, one of the disadvantages of neural networks 
is the large amount of time needed for training. A direct 
way to reduce this time is to parallelize the learning 
algorithms. However, algorithms cannot always be 
parallelized in a simple way, and in addition, the 
amount of communication between processors or 
processes means that most parallel versions of these 
algorithms can only be executed properly in parallel 
computers. That is why, in this work, we propose a 
parallelization of a convolutional neural network under 
the model of High-Level Parallel Compositions or 
HLPC as an original and useful proposal to obtain a 
good performance in the use of a CNN within a 
concrete problem. HLPC are parallel patterns defined 
and logically structured that, once identified in terms of 
their components and of their communication, can be 
adopted in the practice and be available as high-level 
abstractions in user applications within an OO-
programming environment (Brinch Hansen 1993). The 
process interconnection structures of parallel execution 
patterns such as trees can be built using HLPCs, within 
the work environment of POs that is the one used to 
detail the structure of a HLPC implementation (Corradi 
and Leonardi 1991). A structured approach to parallel 
programming is based on the use of 
communication/interaction patterns which are 
predefined structures of user’s application processes 
(Wilkinson and Allen 1999). In such a situation, the 
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structured parallelism approach provides the 
interaction-pattern abstraction and describes 
applications through HLPCs, which are able to 
implement the pattern mentioned already (Darlington 
1993). The encapsulation of a HLPC should follow the 
modularity principle and it should provide a base to 
obtain an effective reusability of the parallel behavior to 
be implemented. When there is the possibility of 
attaining this, a generic parallel pattern is built, which in 
its turn provides a possible implementation of the 
interaction structure between processes of the 
application, independently of the functionality of these 
processes. Several significant and reusable parallel 
patterns of interconnection can be identified in multiple 
applications and parallel algorithms (Roosta and Séller 
1999) which has resulted in a wide library of 
communication patterns between concurrent processes 
such as HLPCs whose details are found in (Rossainz 
and Capel 2008; Rossainz and Capel 2014). In the 
present work we propose the implementation of HLPC 

Pipeline-CNN which represents a convolutional neural 

network using deep learning transfer, as a learning 

strategy for the neural network and it was used for the 
recognition of DNA sequences from a database with 4 
types of hepatitis C virus (type 1, 2, 3 and 6) taken from 
the repository available on the ViPR page 
(https://www.viprbrc.org/brc/home.spg?decorator=vipr) 
The set of DNA sequences used is the Molecular 
database (Splice-junction Gene Sequences) Data Set 
that has 3190 sequences, available on the UCI page 
(https://archive.ics.uci.edu/ml/index.php), with three 
classes of sequences: limit exon-intron, limit intronexon 
and any. For the use of the DNA sequences a 
representation method was designed where each 
nitrogenous base is represented in gray scale to form an 
image. The generated images were used to train the 
convolutional neuronal network HLCP Pipeline-CNN. 
The results are shown both of the classification carried 
out by the HLPC Pipeline-CNN in terms of training 
precision and validation precision, as well as of parallel 
performance in its execution obtaining measurements of 
the law of Amdahl and speedup in a parallel computer 
with 32 exclusive CPU-SET. 
 
2. DEFINITION OF HIGH-LEVEL PARALLEL 

COMPOSITIONS (HLPC) 
Using an OO-programming environment, the basic idea 
is implementing any type of parallel communication 
patterns between the processes of an application or 
distributed/parallel algorithm. A HLPC comes from the 
composition of a set three object types: the manager 
object, the stage objects and the collector object. The 
object manager (Figure 1) represents the HLPC itself 
and makes an encapsulated abstraction out of it that 
hides the internal structure (Rossainz 2005). The object 
manager controls a set of objects references, which 
address the object collector and several stage objects 
and represent the HLPC components whose parallel 
execution is coordinated by the object manager. The 
objects stage are objects of a specific purpose, in charge 

of encapsulating a client-server type interface that 
settles down between the manager and the slave-objects. 
The collector object can see an object in charge of 
storing the results received from the stage objects to 
which is connected, in parallel with other objects of 
HLPC composition. During a service request the control 
flow within the stages of a HLPC depends on the 
implemented communication pattern. Manager, 
collector and stages are included in the definition of a 
PO (Corradi, Leonardo and Zambonelli 1995). POs are 
active objects, which have intrinsic execution 
capability. Applications that deploy the PO pattern can 
exploit the inter-object parallelism as much as the intra-
object parallelism (Bacci, Danelutto, Pelagatti, and 
Vaneschi 1999; Danelutto and Torquati 2014). A PO-
instance object has a similar structure to that of an 
object in C++, and additionally defines a scheduling 
policy that specifies the way in which one or more 
operations carried out by the instance synchronize 
(Danelutto and Torquati 2014). The communication 
modes used are:  The synchronous communication, the 
asynchronous communication and the asynchronous 
future (Birrell 1989; Lavander and Kafura 1995). The 
Synchronization policies are expressed in terms of 
restrictions; for instance, mutual exclusion in 
reader/writer processes or the maximum parallelism 
allowed for writer processes (Andrews 2000). 
 

 
Figure 1: Internal structure of HLPC 
 
The Figure 1 shows the pattern HLPC without defining 
any explicit parallel communication pattern. The box 
that includes the components, represents the 
encapsulated HLPC, internal boxes represent compound 
objects (collector, manager and objects stages), as long 
as the circles are the objects slaves associated to the 
stages. The continuous lines within the HLPC suppose 
that at least a connection should exist between the 
manager and some of the component stages. Same thing 
happens between the stages and the collector. The 
dotted lines mean more than one connection among 
components of the HLPC. 
 
2.1. Construction of Communication Patterns 

between Processes as HLPC 
Currently there is a class library that provides the 
programmer with the three communication patterns 
between processes most commonly used as HLPC: The 
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process farm, the process pipeline and the process tree 
(initially binary process trees), (Liwu 2002). Figure 2, 
Figure 3 and Figure 4 show the farm, pipeline and tree 
models as High-Level Parallel Compositions or HLPC. 
These models are abstract. The programmer must adapt 
them to the problem he is trying to solve by making use 
of the properties of the paradigm of object orientation 
such as inheritance or polymorphism. The 
implementation details can be found in (Rossainz and 
Capel 2008). The structure of the library is shown in the 
class diagram of Figure 5. The details are in (Rossainz 
and Capel 2014). 
 

 
Figure 2: The HLPC of a Farm 
 
With the proposed library it is possible to build concrete 
HLPCs. To build an HLPC, first it should have made 
clear the parallel behavior that the user application 
needs to implement, so that the HLPC becomes this 
pattern itself. Once identified the parallel behavior, the 
second step consists of elaborating a graph of its 
representation. This practice is also good for illustrating 
the general characteristics of the desired system and will 
allow us to define its representation with HLPCs later, 
by following the pattern proposed. When the model of a 
HLPC has already been made clear, it defines a specific 
parallel pattern; let’s say, for example, a tree, or some 
other mentioned pattern, and then the following step 
will be to do its syntactic definition and specify its 
semantics (Liwu 2002). 
 
Finally, the syntactic definition prior to any 
programmed HLPC is transformed into the most 
appropriate programming environment, with the 
objective of producing its parallel implementation.  
The HLPC models of figures 2, 3 and 4 have been used 
to adapt them and generate farms, pipeline and 
particular trees, of problems that have been solved with 
this proposal such as: ordering, search and optimization 
problems, NP-Complete problems like that of the 
Traveling Agent, simulation problems such as the 
movement and attraction of particles in space and more 
recently with problems that have to do with finding 
DNA sequences in the construction of GNOMAS. 

 
Figure 3: The HLPC of a Pipeline 
 

 
Figure 4: The HLPC of a Tree-Divide & Conquer 
 
 
 

 
Figure 5: Structure of the HLPC class library 
 
 
 

Proceedings of the European Modeling and Simulation Symposium, 2019 
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds. 

3



3. CONVOLUTIONAL NEURAL NETWORK 
(CNN) 

In recent years, the field of machine learning has 
progressed enormously in addressing problems of 
classification, identification and pattern recognition. In 
particular, it has been found that a type of model called 
convolutional neural network or CNN achieves 
reasonable performance in hardware visual recognition 
tasks, equaling or exceeding human performance in 
some domains (Salzberg, Searls and Kasif 1998). A 
CNN is an algorithm for machine learning in which a 
model learns to perform classification tasks directly 
from images, videos or sounds. CNNs are especially 
useful for locating patterns in images in order to 
recognize objects, faces and scenes. They learn directly 
from the image data, using patterns to classify the 
images and eliminate the need for a manual extraction 
of features. For a CNN to learn, deep learning models 
are used. The most common is Inseption-V3 that is 
designed for the Visual Recognition challenge, this is a 
standard task in artificial vision, where the models try to 
classify complete images in 1000 ImageNet classes. 
This model is available in TensorFlow, which is a tool 
for machine learning. TensorFlow is designed primarily 
for deep neural network models (Mathworks. 2018). 
Modern models of image recognition have millions of 
parameters; training them from scratch requires a lot of 
tagged training data and a lot of computing power. 
Therefore, one of the disadvantages of neural networks 
is the large amount of time needed for training. A direct 
way to reduce this time is to parallelize the learning 
algorithms. However, the algorithms cannot always be 
parallelized in a simple way, and, the amount of 
communication between the processes, makes that most 
of the parallel versions of these algorithms can only be 
executed in parallel computers (Marcelo, Apolloni, 
Kavka 2000). Transfer learning is a quick technique that 
takes a piece from a model that has already been trained 
in a related task and reuses it in a new model, Figure 6 
(taken from ) shows an example of a CNN, the filters 
are applied to each training image with different 
resolutions, and the output of each convolved image is 
used as input for the next layer generating a 
communication pattern of pipeline type and that can be 
parallelized (Mathworks 2018, Marcelo, Apolloni, 
Kavka 2000). 

 

 
Figure 6: Example of a Convolutional Neural Network 
(taken from Mathworks 2018) 
 
The transfer learning technique is effective for many 
applications, works with moderate amounts of training 
data (thousands, not millions of tagged images) and can 

be executed sequentially in thirty minutes (Salzberg, 
Searls and Kasif 1998). In this work, the parallelization 
of a convoluted neuronal network under the HLPC 
model is shown. The HLPC Pipeline is adapted to a 
convoluted neuronal network model to the transfer 
learning technique; which allows its execution in 
parallel computers or computers with GPUs. 
 
4. REPRESENTATION OF A CNN AS A HLPC 

USING DEEP LEARNING TRANSFER 
Convolutional networks have characteristics of neural 
networks such as activation functions or fully connected 
layers, but also introduce two concepts: the 
convolutional layer and the grouping or sampling layer. 
The architectures of convolutional networks are built by 
stacking these elements, that is why according to the 
computational and memory use issues of a neural 
network for image processing (Marturet and Alferez 
2018), it is useful and appropriate to represent it 
through an HLPC pipeline. For the training of a 
convolutional neuronal network, the transfer of learning 
by extraction of deep descriptors was used as a way of 
training and validating the neural network on the set of 
images of the specific problem to be solved. In this way 
we obtain the HLPC Pipeline-CNN that is shown in the 
figure 7, and that will help to solve the case study that is 
shown in following sections in this article. 

 

 
Figure 7: HLPC Pipeline-CNN 

 

In the HLPC Pipeline-CNN of figure 7, in the first 
convolutional layer, the neurons that make up the CNN 
connect to a portion of the input image provided by the 
user in the HLPC manager object and not to the whole 
of it. When several convolutional layers are 
concatenated, to a part of the output of a layer, certain 
neurons of the next layer are connected, but not all of 
them that make up the second layer. This is carried out 
in the first stage of the HLPC Pipeline-CNN (loop over 
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images). After several concatenated convolutional 
layers, details are obtained regarding the characteristics 
of the image, for example shapes or colors. In each 
convolutional layer, feature maps are stacked. A feature 
map is a layer where all its neurons use the same filter 
and share characteristic parameters. In each 
convolutional layer as many filters are applied as 
feature maps are stacked in it. The transfer of learning 
in the HLPC Pipeline-CNN is produced by describing 
deep descriptors in the sub-stage2 of the model. This 
adjustment occurs through training and validation of the 
set of images of the specific problem that is solved. The 
work is completed in stage 2 and stage 3 of the HLPC 
Pipeline-CNN, executing the classification algorithms 
associated with the slave objects, to generate the matrix 
of deep descriptors and the analysis of main 
components, obtaining as results within the collector's 
object, model performance measures, confusion 
matrices and the network's classification layer (see 
figure 6 and figure 7). The internal execution of the 
parallel objects of the HLPC including the manager, the 
collector and the stages, as well as the inter-object 
parallelism of the HLPC, make the solution of the 
specific problem that is solved obtain a better 
performance than its sequential counterpart, when 
working with a large number of images of the order of 
hundreds of thousands under a hardware architecture 
that is also parallel. 

5. RECOGNITION OF DNA SEQUENCES 
USING HLPC PIPELINE-CNN 

The processes of gene prediction are those that, within 
the area of computational biology, are used for the 
algorithmic identification of pieces of genomic DNA 
sequences (Christos Ouzounis 2012), and that are 
biologically functional. The identification of genes is an 
important area to understand the genome of a species 
once it has been sequenced (Salzberg, Searls and Kasif 
1998). DNA is composed of four molecules called 
nucleotides or nitrogenous bases: adenine, thymine, 
guanine and cytosine (Panduro 2009). A DNA sequence 
is composed of an alphabet that contains the letters of 
the four nitrogenous bases (figure 8).  

 

 
Figure 8: A DNA sequence 

 
A DNA sequence can define the characteristics of a 
living organism, containing all the genetic information 
in units of inheritance called genes. Splicing junctions 
are points in a DNA sequence in which "useless" DNA 
is removed during the process of creating proteins in 
higher organisms. The problem then is to recognize with 

a DNA sequence, the boundaries between the exons (the 
parts of the DNA sequence that are retained after 
splicing) and the introns (the parts of the DNA sequence 
that are cut). This problem consists of two subtasks: 
recognition of exon / intron limits (called “EI” or donor) 
and recognition of intron / exon boundaries (“IE” sites 
or acceptor), (Noordewier, Towell and Shavlik 1991). 
Both tasks are complicated since there is no standard 
sequence to recognize introns and exons, which is why 
it is interesting to design tools that help us identify and 
classify them. 
To improve the representation of a DNA chain, 
sequences are used that can be transformed into 
representation with numerical or alphabetic values: A 
(adenine), T (thymine), G (guanine) and C (cytosine), 
(Genís, Blanco and Guigó 2000), as shows figure 8. 
However, the representation of large amounts of 
information as DNA sequences do not make their 
mathematical analysis easy, this creates the need to find 
new ways of representing information. It is presented as 
a case study to generate images from DNA sequences to 
be analyzed by deep learning techniques, using as a 
convolutional neuronal network the proposal of the 
HLPC Pipeline-CNN shown in this research and thus be 
able to classify images. 
The idea is to convert the DNA sequences to graphic 
representations to train the HLPC Pipeline-CNN. 
Remember that CNN are used for the recognition of 
patterns and classification of images. The DNA 
sequences are represented by letters: A-Adenine, G-
Guanine, C-Cytosine and T-Thymine, however, a CNN 
is not made to process information with this format, so a 
graphic representation of the sequences was designed. 
 
5.1. Case Study: DNA sequences of the Hepatitis-C 

virus 
We used 1847 DNA sequences from a database with 4 
types of hepatitis C virus (type 1, 2, 3 and 6) taken from 
the repository available on the ViPR page 
(https://www.viprbrc.org/brc/home.spg?decorator=vipr) 
and a set of DNA sequences from the Molecular 
database (Splice-junction Gene Sequences) Data Set 
that has 3190 sequences, available on the UCI page 
(https://archive.ics.uci.edu/ml/index.php), with three 
classes of sequences: limit exon-intron, limit intron-
exon and none. The methodology used was the 
following: 
 
1. A grayscale color was assigned to each of the 

letters of the DNA sequence (see table 1), which 
goes from a value of 0 = black to a value of 1 = 
white, so that the intermediate colors are tones of 
gray to show a better contrast. 

2. The image representing the DNA sequences was 
created: A matrix of dimension 60 X 60 was used, 
where the value 60 coincides with the number of 
nitrogenous bases of all the sequences of the 
database. 
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Table 1. Grayscale of nitrogenous bases 
Nitrogen base Value of gray 

A 0 
C 0.3 
G 0.7 
T 1 

 
Each sequence was placed in the first row and 
copied in the rest of the rows until it was 60 in total 
(see figure 9). The result is an image with bars in 
the grayscale like the one shown in Figure 10, each 
of the images obtained is specific to each instance 
of the database shown in Figure 2. In total, 3190 
images were obtained. 

 

 
Figure 9: DNA sequences to be encoded 

 

 
Figure 10: Image of an instance of DNA sequences 
 
3. With the representative images of each sequence, 

the HLPC Pipeline-CNN was trained. This model 
of HLPC is based on the CNN InceptionV3 model 
with deep learning transfer to categorize the 
recognition of three classes of DNA sequences: 
recognition of exon/intron limits (EI sites), 
recognition of intron/exon boundaries (IE sites) and 
recognition of none of the previous two (N). 

4. With the TensorFlow software library, a 
classification model was constructed and placed as 
a slave object within the HLPC Pipeline-CNN to be 
parallelized (see figure 7). This was achieved by 
categorizing the recognition of a database with four 
classes of DNA sequences: Hepatitis C virus type 1, 
2, 3 and 6 and the recognition of another database 
with three types of limits: EI, IE and N. 

5. With the HLPC Pipeline-CNN the last layers of the 
networks were trained with instances obtained from 
the databases, both networks were trained in 4000 
steps. First the HLPC Pipeline-CNN was trained to 
classify the 4 types of Hepatitis virus, then the 
training was done with 2 classes: IE and IE and 
finally with all the classes of the database: IE, IE 
and N to compare the results of the last two 
neurons. 

6. Finally, classification and performance analysis 
results of the proposed HLPC model were obtained. 

 
6. RESULTS AND PERFORMANCE 
The computer equipment used for the training of the 
HLPC Pipeline-CNN was a parallel computer with 64 

processors of which only 32 were exclusive for the tests 
of this work, 8 GB of main memory with a distributed 
shared memory architecture and high-speed buses. 
Regarding classification results for the HLPC Pipeline-
CNN trained with the database of the four types of 
Hepatitis C virus, a precision of 95% was obtained with 
145 images tested and at the end of step 4000 the 
precision training was 94.5% and precision validation 
95% (see table 2). When using the HLPC Pipeline-CNN 
with the classes EI and IE, an evaluation precision of 
80.8% was obtained with 177 test images and at the end 
of step 4000 the precision training was 82% and the 
precision validation was 75% (see table 3). The results 
of the training of the HLPC Pipeline-CNN where the 
three classes of the database were used show a precision 
of evaluation of 57.5% with 301 images and at the end 
of step 4000 the precision training was 69% and the 
precision validation 56% (see table 4). 

 

Table 2. Precision training and precision validation of 
HLPC Pipeline-CNN with classes of Hepatitis C virus 
type 1, 2, 3 and 6. 

Training steps (145 images tested) 

 1000 
steps 

2000 
steps 

3000 
steps 

4000 
steps 

Precision 
Training 

92% 95% 96% 94.5% 

Precision 
Validation 

91% 92% 95% 96% 

 

Table 3. Precision training and precision validation of 
HLPC Pipeline-CNN with IE and EI classes. 

Training steps (177 images tested) 

 1000 
steps 

2000 
steps 

3000 
steps 

4000 
steps 

Precision 
Training 

77% 80% 81.7 82% 

Precision 
Validation 

73% 74.7% 75% 75% 

 

Table 4. Precision training and precision validation of 
HLPC Pipeline-CNN IE, EI and N classes. 

Training steps (301 images tested) 

 1000 
steps 

2000 
steps 

3000 
steps 

4000 
steps 

Precision 
Training 

57% 60% 64% 69% 

Precision 
Validation 

52% 56% 55% 56% 
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Regarding the performance of HLPC Pipeline-CNN for 
the case study that has been shown, the aim is to show 
that the performances obtained are "good" based on the 
model of the HLPC. The graphs in figures 11, 12, 13 
and 14 show the performance analysis of the HLCP 
Pipeline-CNN from 1000 training steps to 4000 training 
steps respectively. In these graphs the speedup of the 
precision training and precision validation of HLPC 
Pipeline-CNN with classes of Hepatitis C virus type 1, 
2, 3 and 6, IE and EI classes and IE, EI and N classes is 
illustrated. In all of them, the speedup shows an 
acceleration to be incorporating more CPU-SET, always 
below the law of Amdahl. The execution times in each 
training vary: For the case of 1000 training steps, of an 
average sequential execution time of 24 minutes we 
obtained a decrease with 32 CPU-SET of an average of 
11.3 minutes. For the case of 2000 training steps, from 
an average sequential execution time of 28 minutes we 
obtained a decrease with 32 CPU-SET of an average of 
17 minutes. In the case of 3000 training steps, we 
obtained an average sequential execution time of 33 
minutes while the parallel execution with 32 CPU-SET 
was an average of 14.8 minutes. Finally, for the case of 
4000 training steps, the average sequential execution 
time was 40 minutes and the parallel execution with 32 
CPU-SET decreased it by an average of 20.1 minutes.  

 
Figure 11: Speedup scalability found for HLPC 
Pipeline-CNN of Precision training and precision 
validation with 1000 training steps. 

 
Figure 12: Speedup scalability found for HLPC 
Pipeline-CNN of Precision training and precision 
validation with 2000 training steps. 

 
 

 
Figure 13: Speedup scalability found for HLPC 
Pipeline-CNN of Precision training and precision 
validation with 3000 training steps. 
 
 

 
Figure 14: Speedup scalability found for HLPC 
Pipeline-CNN of Precision training and precision 
validation with 4000 training steps. 
 

7. CONCLUSIONS 
We discuss the implementation of HLPC Pipeline-CNN 
as generic and reusable communication/interaction 
patterns between processes which implements a 
Convolutional Neural Network (CNN) with deep 
learning transfer, using a pipeline as associated 
communication pattern. This HLPC can even be used 
by inexperienced parallel application programmers to 
obtain efficient code by only programming the 
sequential parts of their applications (slave objects of 
the model of figure 7). The HLPC Pipeline-CNN was 
used to be trained in the recognition of DNA sequences 
through graphic representations and be able to obtain a 
classification of the different types of hepatitis C virus 
(type 1, 2, 3 and 6). The results obtained from the 
HLPC Pipeline-CNN trained with the Hepatitis C virus 
database suggest that the automatic learning 
methodology used in this work is suitable for the 
classification of images generated from DNA 
sequences. Good percentages of evaluation precision, 
training precision and validation precision are shown. 
The transfer of learning is good when there are few 
images available to train the HLPC Pipeline-CNN and it 
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allows to reach acceptable results in most cases (This 
can be seen in tables 2, 3 and 4), although the results 
can be improved. On the other hand, the parallel 
execution of the HLPC Pipeline-CNN shows a good 
performance comparing its acceleration with respect to 
its sequential execution. We have also obtained good 
performance in their executions and speedup scalability 
compared to Amdahl’s law on the number of processors 
used in training (see figures 11, 12, 13 and 14). 
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