
REPRESENTATION OF A CONVOLUTIONAL NEURONAL NETWORK AS A HIGH
LEVEL PARALEL COMPOSITION APPLIED TO THE RECOGNITION OF DNA

SEQUENCES

M. Rossainz-López(a), S. Zúñiga-Herrera(a), M. Capel-Tuñón(b), I. Pineda-Torres(a)

(a) Faculty of Computer Science, Autonomous University of Puebla, San Claudio Avenue and South 14th Street,
San Manuel, Puebla, Puebla, 72000, México

(b) Software Engineering Department, College of Informatics and Telecommunications ETSIIT,
University of Granada, Daniel Saucedo Aranda s/n, Granada 18071, Spain

(a)rossainz@cs.buap.mx, (a)sarahi.zuhe@gmail.com, (b)manuelcapel@ugr.es, (a)ipineda@cs.buap.mx

ABSTRACT
This work proposes the use of Structured Parallel

Programming using the process communication pattern

called Pipeline in its version of High-Level Parallel

Composition (HLPC) to implement a process

composition that represents a convolutional neuronal

network or CNN and that is used to solve a specific

problem of DNA sequences. The HLPC Pipeline-CNN

is then shown, which represents the implementation of a

convolutional neural network making use of the three

types of parallel objects that make up an HLPC: A

manager object, one or more stage objects and a

collector object. The manager object represents the

HLPC itself and makes an encapsulated abstraction out

of it that hides the internal structure, the stage objects

are objects of a specific purpose, in charge of
encapsulating an client-server type interface that settles
down between the manager and the slave-objects and

the collector object that is an object in charge of storing
the results received from the stage objects to which is
connected. To show the usefulness and performance of
the HLPC Pipeline-CNN implemented, it was used in
the recognition of DNA sequences from a database with
4 types of hepatitis C virus (type 1, 2, 3 and 6). The
results of this classification were obtained in terms of
percentages of training precision and validation
precision, as well as performance results in terms of
speedup from 1000 to 4000 training steps with 2, 4, 8,
16 and 32 exclusive processors in one parallel machine
of up to 64 processors with shared-distributed memory.

Keywords: High Level Parallel Compositions, HLPC,
Convolutional Neuronal Network, CNN, Deep Learning
Transfer, DNA Sequences, Parallel Objects, Structured
Parallel Programming.

1. INTRODUCTION
The convolutional neural networks (CNN) are like
multichannel neural networks, its main advantage is that
each part of the network is trained to perform a task,
this significantly reduces the number of hidden layers,
so training is faster (Calvo 2015). The convolutional
neural networks are very powerful for everything that
has to do with the image analysis. However, its use is
not only restricted to image analysis, it can also be
applied to the speech recognition, or to the classification
of sentences, with the necessary transformations

regarding the type of the input data (Calvo 2015,
Vizcayab2018). A convolutional neuronal network is a
multilayer network consisting of alternating
convolutional and reduction layers, like a pipeline
architecture (Calvo 2015). In the convolution,
operations of products and sums are carried out between
the starting layer and the n filters that a characteristic
map (matrix) generates. The extracted characteristics
correspond to each possible location of the filter in the
original image. The advantage is that the same filter
(neuron) serves to extract the same characteristic in any
part of the input, with this it is possible to reduce the
number of connections and the number of parameters to
train in comparison with a multilayer network of total
connection (Calvo 2015, Vizcayab2018). In the
reduction the number of parameters is reduced by
staying with the most common characteristics. The last
layer of this network is a sorting layer that will have as
many neurons as the number of classes to predict.
However, one of the disadvantages of neural networks
is the large amount of time needed for training. A direct
way to reduce this time is to parallelize the learning
algorithms. However, algorithms cannot always be
parallelized in a simple way, and in addition, the
amount of communication between processors or
processes means that most parallel versions of these
algorithms can only be executed properly in parallel
computers. That is why, in this work, we propose a
parallelization of a convolutional neural network under
the model of High-Level Parallel Compositions or
HLPC as an original and useful proposal to obtain a
good performance in the use of a CNN within a
concrete problem. HLPC are parallel patterns defined
and logically structured that, once identified in terms of
their components and of their communication, can be
adopted in the practice and be available as high-level
abstractions in user applications within an OO-
programming environment (Brinch Hansen 1993). The
process interconnection structures of parallel execution
patterns such as trees can be built using HLPCs, within
the work environment of POs that is the one used to
detail the structure of a HLPC implementation (Corradi
and Leonardi 1991). A structured approach to parallel
programming is based on the use of
communication/interaction patterns which are
predefined structures of user’s application processes
(Wilkinson and Allen 1999). In such a situation, the

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

1

DOI:https://doi.org/10.46354/i3m.2019.emss.001

mailto:rossainz@cs.buap.mx
mailto:rossainz@cs.buap.mx
mailto:sarahi.zuhe@gmail.com
mailto:sarahi.zuhe@gmail.com
mailto:manuelcapel@ugr.es
mailto:manuelcapel@ugr.es

structured parallelism approach provides the
interaction-pattern abstraction and describes
applications through HLPCs, which are able to
implement the pattern mentioned already (Darlington
1993). The encapsulation of a HLPC should follow the
modularity principle and it should provide a base to
obtain an effective reusability of the parallel behavior to
be implemented. When there is the possibility of
attaining this, a generic parallel pattern is built, which in
its turn provides a possible implementation of the
interaction structure between processes of the
application, independently of the functionality of these
processes. Several significant and reusable parallel
patterns of interconnection can be identified in multiple
applications and parallel algorithms (Roosta and Séller
1999) which has resulted in a wide library of
communication patterns between concurrent processes
such as HLPCs whose details are found in (Rossainz
and Capel 2008; Rossainz and Capel 2014). In the
present work we propose the implementation of HLPC

Pipeline-CNN which represents a convolutional neural

network using deep learning transfer, as a learning

strategy for the neural network and it was used for the
recognition of DNA sequences from a database with 4
types of hepatitis C virus (type 1, 2, 3 and 6) taken from
the repository available on the ViPR page
(https://www.viprbrc.org/brc/home.spg?decorator=vipr)
The set of DNA sequences used is the Molecular
database (Splice-junction Gene Sequences) Data Set
that has 3190 sequences, available on the UCI page
(https://archive.ics.uci.edu/ml/index.php), with three
classes of sequences: limit exon-intron, limit intronexon
and any. For the use of the DNA sequences a
representation method was designed where each
nitrogenous base is represented in gray scale to form an
image. The generated images were used to train the
convolutional neuronal network HLCP Pipeline-CNN.
The results are shown both of the classification carried
out by the HLPC Pipeline-CNN in terms of training
precision and validation precision, as well as of parallel
performance in its execution obtaining measurements of
the law of Amdahl and speedup in a parallel computer
with 32 exclusive CPU-SET.

2. DEFINITION OF HIGH-LEVEL PARALLEL

COMPOSITIONS (HLPC)
Using an OO-programming environment, the basic idea
is implementing any type of parallel communication
patterns between the processes of an application or
distributed/parallel algorithm. A HLPC comes from the
composition of a set three object types: the manager
object, the stage objects and the collector object. The
object manager (Figure 1) represents the HLPC itself
and makes an encapsulated abstraction out of it that
hides the internal structure (Rossainz 2005). The object
manager controls a set of objects references, which
address the object collector and several stage objects
and represent the HLPC components whose parallel
execution is coordinated by the object manager. The
objects stage are objects of a specific purpose, in charge

of encapsulating a client-server type interface that
settles down between the manager and the slave-objects.
The collector object can see an object in charge of
storing the results received from the stage objects to
which is connected, in parallel with other objects of
HLPC composition. During a service request the control
flow within the stages of a HLPC depends on the
implemented communication pattern. Manager,
collector and stages are included in the definition of a
PO (Corradi, Leonardo and Zambonelli 1995). POs are
active objects, which have intrinsic execution
capability. Applications that deploy the PO pattern can
exploit the inter-object parallelism as much as the intra-
object parallelism (Bacci, Danelutto, Pelagatti, and
Vaneschi 1999; Danelutto and Torquati 2014). A PO-
instance object has a similar structure to that of an
object in C++, and additionally defines a scheduling
policy that specifies the way in which one or more
operations carried out by the instance synchronize
(Danelutto and Torquati 2014). The communication
modes used are: The synchronous communication, the
asynchronous communication and the asynchronous
future (Birrell 1989; Lavander and Kafura 1995). The
Synchronization policies are expressed in terms of
restrictions; for instance, mutual exclusion in
reader/writer processes or the maximum parallelism
allowed for writer processes (Andrews 2000).

Figure 1: Internal structure of HLPC

The Figure 1 shows the pattern HLPC without defining
any explicit parallel communication pattern. The box
that includes the components, represents the
encapsulated HLPC, internal boxes represent compound
objects (collector, manager and objects stages), as long
as the circles are the objects slaves associated to the
stages. The continuous lines within the HLPC suppose
that at least a connection should exist between the
manager and some of the component stages. Same thing
happens between the stages and the collector. The
dotted lines mean more than one connection among
components of the HLPC.

2.1. Construction of Communication Patterns

between Processes as HLPC
Currently there is a class library that provides the
programmer with the three communication patterns
between processes most commonly used as HLPC: The

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

2

https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

process farm, the process pipeline and the process tree
(initially binary process trees), (Liwu 2002). Figure 2,
Figure 3 and Figure 4 show the farm, pipeline and tree
models as High-Level Parallel Compositions or HLPC.
These models are abstract. The programmer must adapt
them to the problem he is trying to solve by making use
of the properties of the paradigm of object orientation
such as inheritance or polymorphism. The
implementation details can be found in (Rossainz and
Capel 2008). The structure of the library is shown in the
class diagram of Figure 5. The details are in (Rossainz
and Capel 2014).

Figure 2: The HLPC of a Farm

With the proposed library it is possible to build concrete
HLPCs. To build an HLPC, first it should have made
clear the parallel behavior that the user application
needs to implement, so that the HLPC becomes this
pattern itself. Once identified the parallel behavior, the
second step consists of elaborating a graph of its
representation. This practice is also good for illustrating
the general characteristics of the desired system and will
allow us to define its representation with HLPCs later,
by following the pattern proposed. When the model of a
HLPC has already been made clear, it defines a specific
parallel pattern; let’s say, for example, a tree, or some
other mentioned pattern, and then the following step
will be to do its syntactic definition and specify its
semantics (Liwu 2002).

Finally, the syntactic definition prior to any
programmed HLPC is transformed into the most
appropriate programming environment, with the
objective of producing its parallel implementation.
The HLPC models of figures 2, 3 and 4 have been used
to adapt them and generate farms, pipeline and
particular trees, of problems that have been solved with
this proposal such as: ordering, search and optimization
problems, NP-Complete problems like that of the
Traveling Agent, simulation problems such as the
movement and attraction of particles in space and more
recently with problems that have to do with finding
DNA sequences in the construction of GNOMAS.

Figure 3: The HLPC of a Pipeline

Figure 4: The HLPC of a Tree-Divide & Conquer

Figure 5: Structure of the HLPC class library

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

3

3. CONVOLUTIONAL NEURAL NETWORK
(CNN)

In recent years, the field of machine learning has
progressed enormously in addressing problems of
classification, identification and pattern recognition. In
particular, it has been found that a type of model called
convolutional neural network or CNN achieves
reasonable performance in hardware visual recognition
tasks, equaling or exceeding human performance in
some domains (Salzberg, Searls and Kasif 1998). A
CNN is an algorithm for machine learning in which a
model learns to perform classification tasks directly
from images, videos or sounds. CNNs are especially
useful for locating patterns in images in order to
recognize objects, faces and scenes. They learn directly
from the image data, using patterns to classify the
images and eliminate the need for a manual extraction
of features. For a CNN to learn, deep learning models
are used. The most common is Inseption-V3 that is
designed for the Visual Recognition challenge, this is a
standard task in artificial vision, where the models try to
classify complete images in 1000 ImageNet classes.
This model is available in TensorFlow, which is a tool
for machine learning. TensorFlow is designed primarily
for deep neural network models (Mathworks. 2018).
Modern models of image recognition have millions of
parameters; training them from scratch requires a lot of
tagged training data and a lot of computing power.
Therefore, one of the disadvantages of neural networks
is the large amount of time needed for training. A direct
way to reduce this time is to parallelize the learning
algorithms. However, the algorithms cannot always be
parallelized in a simple way, and, the amount of
communication between the processes, makes that most
of the parallel versions of these algorithms can only be
executed in parallel computers (Marcelo, Apolloni,
Kavka 2000). Transfer learning is a quick technique that
takes a piece from a model that has already been trained
in a related task and reuses it in a new model, Figure 6
(taken from) shows an example of a CNN, the filters
are applied to each training image with different
resolutions, and the output of each convolved image is
used as input for the next layer generating a
communication pattern of pipeline type and that can be
parallelized (Mathworks 2018, Marcelo, Apolloni,
Kavka 2000).

Figure 6: Example of a Convolutional Neural Network
(taken from Mathworks 2018)

The transfer learning technique is effective for many
applications, works with moderate amounts of training
data (thousands, not millions of tagged images) and can

be executed sequentially in thirty minutes (Salzberg,
Searls and Kasif 1998). In this work, the parallelization
of a convoluted neuronal network under the HLPC
model is shown. The HLPC Pipeline is adapted to a
convoluted neuronal network model to the transfer
learning technique; which allows its execution in
parallel computers or computers with GPUs.

4. REPRESENTATION OF A CNN AS A HLPC

USING DEEP LEARNING TRANSFER
Convolutional networks have characteristics of neural
networks such as activation functions or fully connected
layers, but also introduce two concepts: the
convolutional layer and the grouping or sampling layer.
The architectures of convolutional networks are built by
stacking these elements, that is why according to the
computational and memory use issues of a neural
network for image processing (Marturet and Alferez
2018), it is useful and appropriate to represent it
through an HLPC pipeline. For the training of a
convolutional neuronal network, the transfer of learning
by extraction of deep descriptors was used as a way of
training and validating the neural network on the set of
images of the specific problem to be solved. In this way
we obtain the HLPC Pipeline-CNN that is shown in the
figure 7, and that will help to solve the case study that is
shown in following sections in this article.

Figure 7: HLPC Pipeline-CNN

In the HLPC Pipeline-CNN of figure 7, in the first
convolutional layer, the neurons that make up the CNN
connect to a portion of the input image provided by the
user in the HLPC manager object and not to the whole
of it. When several convolutional layers are
concatenated, to a part of the output of a layer, certain
neurons of the next layer are connected, but not all of
them that make up the second layer. This is carried out
in the first stage of the HLPC Pipeline-CNN (loop over

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

4

images). After several concatenated convolutional
layers, details are obtained regarding the characteristics
of the image, for example shapes or colors. In each
convolutional layer, feature maps are stacked. A feature
map is a layer where all its neurons use the same filter
and share characteristic parameters. In each
convolutional layer as many filters are applied as
feature maps are stacked in it. The transfer of learning
in the HLPC Pipeline-CNN is produced by describing
deep descriptors in the sub-stage2 of the model. This
adjustment occurs through training and validation of the
set of images of the specific problem that is solved. The
work is completed in stage 2 and stage 3 of the HLPC
Pipeline-CNN, executing the classification algorithms
associated with the slave objects, to generate the matrix
of deep descriptors and the analysis of main
components, obtaining as results within the collector's
object, model performance measures, confusion
matrices and the network's classification layer (see
figure 6 and figure 7). The internal execution of the
parallel objects of the HLPC including the manager, the
collector and the stages, as well as the inter-object
parallelism of the HLPC, make the solution of the
specific problem that is solved obtain a better
performance than its sequential counterpart, when
working with a large number of images of the order of
hundreds of thousands under a hardware architecture
that is also parallel.

5. RECOGNITION OF DNA SEQUENCES
USING HLPC PIPELINE-CNN

The processes of gene prediction are those that, within
the area of computational biology, are used for the
algorithmic identification of pieces of genomic DNA
sequences (Christos Ouzounis 2012), and that are
biologically functional. The identification of genes is an
important area to understand the genome of a species
once it has been sequenced (Salzberg, Searls and Kasif
1998). DNA is composed of four molecules called
nucleotides or nitrogenous bases: adenine, thymine,
guanine and cytosine (Panduro 2009). A DNA sequence
is composed of an alphabet that contains the letters of
the four nitrogenous bases (figure 8).

Figure 8: A DNA sequence

A DNA sequence can define the characteristics of a
living organism, containing all the genetic information
in units of inheritance called genes. Splicing junctions
are points in a DNA sequence in which "useless" DNA
is removed during the process of creating proteins in
higher organisms. The problem then is to recognize with

a DNA sequence, the boundaries between the exons (the
parts of the DNA sequence that are retained after
splicing) and the introns (the parts of the DNA sequence
that are cut). This problem consists of two subtasks:
recognition of exon / intron limits (called “EI” or donor)
and recognition of intron / exon boundaries (“IE” sites
or acceptor), (Noordewier, Towell and Shavlik 1991).
Both tasks are complicated since there is no standard
sequence to recognize introns and exons, which is why
it is interesting to design tools that help us identify and
classify them.
To improve the representation of a DNA chain,
sequences are used that can be transformed into
representation with numerical or alphabetic values: A
(adenine), T (thymine), G (guanine) and C (cytosine),
(Genís, Blanco and Guigó 2000), as shows figure 8.
However, the representation of large amounts of
information as DNA sequences do not make their
mathematical analysis easy, this creates the need to find
new ways of representing information. It is presented as
a case study to generate images from DNA sequences to
be analyzed by deep learning techniques, using as a
convolutional neuronal network the proposal of the
HLPC Pipeline-CNN shown in this research and thus be
able to classify images.
The idea is to convert the DNA sequences to graphic
representations to train the HLPC Pipeline-CNN.
Remember that CNN are used for the recognition of
patterns and classification of images. The DNA
sequences are represented by letters: A-Adenine, G-
Guanine, C-Cytosine and T-Thymine, however, a CNN
is not made to process information with this format, so a
graphic representation of the sequences was designed.

5.1. Case Study: DNA sequences of the Hepatitis-C

virus
We used 1847 DNA sequences from a database with 4
types of hepatitis C virus (type 1, 2, 3 and 6) taken from
the repository available on the ViPR page
(https://www.viprbrc.org/brc/home.spg?decorator=vipr)
and a set of DNA sequences from the Molecular
database (Splice-junction Gene Sequences) Data Set
that has 3190 sequences, available on the UCI page
(https://archive.ics.uci.edu/ml/index.php), with three
classes of sequences: limit exon-intron, limit intron-
exon and none. The methodology used was the
following:

1. A grayscale color was assigned to each of the

letters of the DNA sequence (see table 1), which
goes from a value of 0 = black to a value of 1 =
white, so that the intermediate colors are tones of
gray to show a better contrast.

2. The image representing the DNA sequences was
created: A matrix of dimension 60 X 60 was used,
where the value 60 coincides with the number of
nitrogenous bases of all the sequences of the
database.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

5

https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

Table 1. Grayscale of nitrogenous bases
Nitrogen base Value of gray

A 0
C 0.3
G 0.7
T 1

Each sequence was placed in the first row and
copied in the rest of the rows until it was 60 in total
(see figure 9). The result is an image with bars in
the grayscale like the one shown in Figure 10, each
of the images obtained is specific to each instance
of the database shown in Figure 2. In total, 3190
images were obtained.

Figure 9: DNA sequences to be encoded

Figure 10: Image of an instance of DNA sequences

3. With the representative images of each sequence,

the HLPC Pipeline-CNN was trained. This model
of HLPC is based on the CNN InceptionV3 model
with deep learning transfer to categorize the
recognition of three classes of DNA sequences:
recognition of exon/intron limits (EI sites),
recognition of intron/exon boundaries (IE sites) and
recognition of none of the previous two (N).

4. With the TensorFlow software library, a
classification model was constructed and placed as
a slave object within the HLPC Pipeline-CNN to be
parallelized (see figure 7). This was achieved by
categorizing the recognition of a database with four
classes of DNA sequences: Hepatitis C virus type 1,
2, 3 and 6 and the recognition of another database
with three types of limits: EI, IE and N.

5. With the HLPC Pipeline-CNN the last layers of the
networks were trained with instances obtained from
the databases, both networks were trained in 4000
steps. First the HLPC Pipeline-CNN was trained to
classify the 4 types of Hepatitis virus, then the
training was done with 2 classes: IE and IE and
finally with all the classes of the database: IE, IE
and N to compare the results of the last two
neurons.

6. Finally, classification and performance analysis
results of the proposed HLPC model were obtained.

6. RESULTS AND PERFORMANCE
The computer equipment used for the training of the
HLPC Pipeline-CNN was a parallel computer with 64

processors of which only 32 were exclusive for the tests
of this work, 8 GB of main memory with a distributed
shared memory architecture and high-speed buses.
Regarding classification results for the HLPC Pipeline-
CNN trained with the database of the four types of
Hepatitis C virus, a precision of 95% was obtained with
145 images tested and at the end of step 4000 the
precision training was 94.5% and precision validation
95% (see table 2). When using the HLPC Pipeline-CNN
with the classes EI and IE, an evaluation precision of
80.8% was obtained with 177 test images and at the end
of step 4000 the precision training was 82% and the
precision validation was 75% (see table 3). The results
of the training of the HLPC Pipeline-CNN where the
three classes of the database were used show a precision
of evaluation of 57.5% with 301 images and at the end
of step 4000 the precision training was 69% and the
precision validation 56% (see table 4).

Table 2. Precision training and precision validation of
HLPC Pipeline-CNN with classes of Hepatitis C virus
type 1, 2, 3 and 6.

Training steps (145 images tested)

 1000
steps

2000
steps

3000
steps

4000
steps

Precision
Training

92% 95% 96% 94.5%

Precision
Validation

91% 92% 95% 96%

Table 3. Precision training and precision validation of
HLPC Pipeline-CNN with IE and EI classes.

Training steps (177 images tested)

 1000
steps

2000
steps

3000
steps

4000
steps

Precision
Training

77% 80% 81.7 82%

Precision
Validation

73% 74.7% 75% 75%

Table 4. Precision training and precision validation of
HLPC Pipeline-CNN IE, EI and N classes.

Training steps (301 images tested)

 1000
steps

2000
steps

3000
steps

4000
steps

Precision
Training

57% 60% 64% 69%

Precision
Validation

52% 56% 55% 56%

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

6

Regarding the performance of HLPC Pipeline-CNN for
the case study that has been shown, the aim is to show
that the performances obtained are "good" based on the
model of the HLPC. The graphs in figures 11, 12, 13
and 14 show the performance analysis of the HLCP
Pipeline-CNN from 1000 training steps to 4000 training
steps respectively. In these graphs the speedup of the
precision training and precision validation of HLPC
Pipeline-CNN with classes of Hepatitis C virus type 1,
2, 3 and 6, IE and EI classes and IE, EI and N classes is
illustrated. In all of them, the speedup shows an
acceleration to be incorporating more CPU-SET, always
below the law of Amdahl. The execution times in each
training vary: For the case of 1000 training steps, of an
average sequential execution time of 24 minutes we
obtained a decrease with 32 CPU-SET of an average of
11.3 minutes. For the case of 2000 training steps, from
an average sequential execution time of 28 minutes we
obtained a decrease with 32 CPU-SET of an average of
17 minutes. In the case of 3000 training steps, we
obtained an average sequential execution time of 33
minutes while the parallel execution with 32 CPU-SET
was an average of 14.8 minutes. Finally, for the case of
4000 training steps, the average sequential execution
time was 40 minutes and the parallel execution with 32
CPU-SET decreased it by an average of 20.1 minutes.

Figure 11: Speedup scalability found for HLPC
Pipeline-CNN of Precision training and precision
validation with 1000 training steps.

Figure 12: Speedup scalability found for HLPC
Pipeline-CNN of Precision training and precision
validation with 2000 training steps.

Figure 13: Speedup scalability found for HLPC
Pipeline-CNN of Precision training and precision
validation with 3000 training steps.

Figure 14: Speedup scalability found for HLPC
Pipeline-CNN of Precision training and precision
validation with 4000 training steps.

7. CONCLUSIONS
We discuss the implementation of HLPC Pipeline-CNN
as generic and reusable communication/interaction
patterns between processes which implements a
Convolutional Neural Network (CNN) with deep
learning transfer, using a pipeline as associated
communication pattern. This HLPC can even be used
by inexperienced parallel application programmers to
obtain efficient code by only programming the
sequential parts of their applications (slave objects of
the model of figure 7). The HLPC Pipeline-CNN was
used to be trained in the recognition of DNA sequences
through graphic representations and be able to obtain a
classification of the different types of hepatitis C virus
(type 1, 2, 3 and 6). The results obtained from the
HLPC Pipeline-CNN trained with the Hepatitis C virus
database suggest that the automatic learning
methodology used in this work is suitable for the
classification of images generated from DNA
sequences. Good percentages of evaluation precision,
training precision and validation precision are shown.
The transfer of learning is good when there are few
images available to train the HLPC Pipeline-CNN and it

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

7

allows to reach acceptable results in most cases (This
can be seen in tables 2, 3 and 4), although the results
can be improved. On the other hand, the parallel
execution of the HLPC Pipeline-CNN shows a good
performance comparing its acceleration with respect to
its sequential execution. We have also obtained good
performance in their executions and speedup scalability
compared to Amdahl’s law on the number of processors
used in training (see figures 11, 12, 13 and 14).

REFERENCES
Andrews G.R., 2000. Foundations of Multithreaded,

Parallel, and Distributed Programming, Addison-
Wesley

Bacci, Danelutto, Pelagatti, Vaneschi, 1999. SklE: A
Heterogeneous Environment for HPC
Applications. Parallel Computing 25.

Birrell A., 1989. An Introduction to Programming with
Threads, Digital Equipment Corporation, Systems
Research Center, Palo Alto California, USA.

Brinch Hansen, 1993. Model Programs for
Computational Science: A programming
methodology for multicomputers, Concurrency:
Practice and Experience, Volume 5, Number 5.

Calvo D. (2015). Red Neuronal Convolucional (CNN).
Data Scientist. http://www.diegocalvo.es/red-
neuronal-convolucional/

Corradi A., Leonardi L., 1991. PO Constraints as tools
to synchronize active objects. Journal Object
Oriented Programming 10, pp. 42-53.

Corradi A, Leonardo L, Zambonelli F., 1995.
Experiences toward an Object-Oriented Approach
to Structured Parallel Programming. DEIS
technical report no. DEIS-LIA-95-007.

Christos Ouzounis 2012. Rise and demise of
bioinformatics? promise and progress. PLoS
computational biology, 8(4):e1002487.

Danelutto M. and Torquati M, 2014. Loop parallelism:
a new skeleton perspective on data parallel
patterns, in Proc. of Intl. Euromicro PDP: Parallel
Distributed and Network-based Processing,
Torino, Italy.

Darlington et al., 1993, Parallel Programming Using
Skeleton Functions. Proceedings PARLE’93,
Munich (D).

Genís P, Blanco P. and Guigó R., (2000). Geneid in
drosophila. Genome research, 10(4):511–515.

Lavander G.R., Kafura D.G. 1995. A Polimorphic
Future and First-class Function Type for
Concurrent Object-Oriented Programming.
Journal of Object-Oriented Systems.

Liwu Li, 2002. Java Data Structures and Programming.
Springer Verlag. Germany. ISBN: 3-540-63763X.

Marcelo A., Apolloni J., Kavka C., et-al. 2000.
Entrenamiento de Redes Neuronales. Universidad
Nacional de San Luís. WICC 2000. Argentina.

Marturet R., Alferez E.S., 2018. Evaluación de Redes
Neuronales Convulcionales para la clasificación de
imágenes histológicas de cancer colorrectar
mediante transferencia de aprendizaje. Master en

Bioinformática y Bioestadística. Universitat
Oberta de Catalunya. España.

Mathworks. 2018. Deep learning.
https://la.mathworks.com/solutions/deep-
learning/convolutional-neural-network.html

Noordewier M, Towell G, and Shavlik Jude, (1991).
Training knowledge-based neural networks to
recognize genes in DNA sequences. In Advances
in neural information processing systems, pages
530–536.

Panduro A, 2009. Biología molecular en la clínica.
McGraw-Hill Interamericana.

Roosta, Séller, 1999. Parallel Processing and Parallel
Algorithms. Theory and Computation. Springer.

Rossainz, M., 2005. Una Metodología de Programación
Basada en Composiciones Paralelas de Alto Nivel
(HLPCs). Universidad de Granada, PhD
dissertation, 02/25/2005.

Rossainz, M., Capel M., 2008. A Parallel Programming
Methodology using Communication Patterns
named CPANS or Composition of Parallel Object.
20TH European Modeling & Simulation
Symposium.Campora S. Giovanni. Italy.

Rossainz M., Capel M., 2014. Approach class library of
high level parallel compositions to implements
communication patterns using structured parallel
programming. 26TH European Modeling &
Simulation Symposium. Campora Bordeaux,
France.

Salzberg SL, Searls DB, and Kasif S., 1998.
Computational gene prediction using neural
networks and similarity search. Computational
Methods in Molecular Biology, pp.32-109.

Vizcaya R., (2018). Deep Learning para la detección de
peatones y vehículos sobre FPGA. Disertación de
Master. Universidad Autónoma del Estado de
México.

Wilkinson B., Allen M., 1999. Parallel Programming
Techniques and Applications Using Networked
Workstations and Parallel Computers. Prentice-
Hall. USA.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

8

http://www.diegocalvo.es/red-neuronal-convolucional/
http://www.diegocalvo.es/red-neuronal-convolucional/
http://www.diegocalvo.es/red-neuronal-convolucional/
http://www.diegocalvo.es/red-neuronal-convolucional/
https://la.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://la.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://la.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://la.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

