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ABSTRACT 

This paper proposes knowledge-based modelling 

framework to manage the storage, analysis, and 

processing of data, information, and knowledge of a 

typical Flexible Manufacturing System (FMS). The 

framework utilizes the concept of virtual engineering 

object (VEO) and virtual engineering process (VEP) for 

developing knowledge models of FMS to achieve 

effective scheduling and manufacturing flexibility. The 

proposed generic model is capable of capturing in real 

time the manufacturing data, information and 

knowledge at every stage of production i.e. at the object 

level, the process level, and at the factory level. The 

significance of this study is that it supports decision 

making by reusing past decisional  experience, which 

will not only help in effective real time data monitoring 

and processing but also make FMS system more 

intelligent and ready to function in the virtual Industry 

4.0 environment. 

Keywords: knowledge representation, knowledge based 

model, computer integrated manufacturing 

 

1. INTRODUCTION AND BACKGROUND 

A flexible manufacturing system (FMS) is a method for 

producing goods that is readily adaptable to changes in 

the product being manufactured, both in type and 

quantity. Machines and computerized systems are 

configured to manufacture different parts and handle 

varying levels of production. A flexible manufacturing 

system (FMS) gives manufacturing firms an advantage 

to quickly change a manufacturing environment to 

improve process efficiency and thus lower production 

cost. FMS is defined as an integrated, computer-

controlled complex system of automated material 

handling devices and numerically controlled tools that 

can simultaneously process medium-size volumes of 

medium variety parts (Yadav and Jayswal 2018). Two 

basic manufacturing flexibility types are proposed: 

machine flexibility and routing flexibility. Based on 

these basic flexibility types other types of flexibility 

like product flexibility, process flexibility, operation 

flexibility, volume flexibility, expansion flexibility and 

production flexibility can be derived.    

Due to advantages associated with FMS, it is an area of 

interest from earlier days (Groover 2007). Researchers 

were working on improving the performance of FMS 

with application of various techniques. Earlier 

analytical methods were used for accessing FMS 

performance (Stecke 1986) but with growing 

technology, simulation, artificial intelligence, Petri Nets 

etc. modelling techniques have gained importance too 

(Yadav and Jayswal 2018). 

Investigation of work that are accomplished by using 

different modelling techniques in FMS like 

mathematical, artificial intelligence, hierarchical, multi 

criteria decision-making method, Petri Nets and 

simulation have some drawbacks as well some 

advantages. The drawbacks associated with 

mathematical modelling are the stated assumptions, as 

they may not be valid in real world. Also the process of 

computation becomes large with increase in the size of 

the problem. For analyzing different system 

performance measures of FMS and seeing how they 

behave with constraints in particular conditions, the 

process of modelling and simulation is the best one. For 

avoiding and protecting the occurrence of deadlock in 

the FMS system, Petri Net models are used generally. 

Selection of various machine and parts in FMS can be 

done effectively by using mathematical and MCDM 

techniques. FMS control can be done efficiently by 

using artificial intelligence technique. Selection of best 

dispatching rule from given alternatives is well 

evaluated by MCDM and artificial intelligence 

techniques (Yadav and Jayswal 2018). Thus, general 

purpose modelling technique for implementation, 

design and control of FMS is needed. 

This paper proposes a multipurpose framework, in 

which previous knowledge of the FMS along with 

information communication technology (ICT) features 

are utilized to induce intelligence to the FMS system. 

The proposed model enables micro level integration of 

various FMS components and processes, which in turn 

will not only facilitate the real-time control and 
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monitoring capabilities but also enhance effective 

decision making.  

 

2. KNOWLEDGE BASED FMS MODEL 

The hypothetical framework  for the proposed FSM 

model is presented in Figure 1. It represents a typical 

FMS configuration assumed for modelling and research 

purposes (Ali and Wadhwa 2010). 

 

 
Figure 1: Framework for proposed FMS model 

 

The above FMS framework was modeled using unique 

knowledge representation technique called Decisional 

DNA together with the concepts of Virtual Engineering 

Object and Virtual Engineering Process which are 

presented next. 

 

2.1. Set of Experience and  Decisional DNA 

One of the challenges of the Semantic Web society is 

smart storage of information and knowledge in artificial 

systems, so it can be unified, enhanced, reused, shared, 

communicated and distributed between artificial 

systems (Shabolt et al. 2006). Our DDNA concept 

introduces one of the key components of addressing the 

above challenge. This concept stems from the role of 

deoxyribonucleic acid (DNA) in storing and sharing 

information and knowledge.  The idea behind our 

approach was to develop an artificial system, an 

architecture that would support discovering, adding, 

storing, improving, and sharing information and 

knowledge among machines, processes and 

organisations through experience. We proposed a novel 

Knowledge Representation (KR) approach in which 

experiential knowledge is represented by Set of 

Experience (SOE; Figure 2) and is carried into the 

future by Decisional DNA (DDNA; Figure 3) (Sanin 

and Szczerbicki 2004, Sanin et al 2009). 
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Figure 2: Structure of SOE 
 

As illustrated in Figure 2, SOE is the combination of 4 

components that characterise decision making actions 

(variables V, functions F, constraints C, and rules R) 

and it comprises a series of mathematical concepts 

(logical element), together with a set of rules (ruled 

based element), and it is built upon a specific event of 

decision-making (frame element). 

 
 

 
Figure 3: Sets of Experience (Decisional Genes) are 

grouped according to their phenotype, creating 

Decisional Chromosomes, and groups of chromosomes 

create the Decisional DNA 

 

SOE and DDNA can be implemented on various 

platforms (e.g. ontology, reflexive ontology, software 

based, fuzzy logic etc.) in multi domains, which makes 

it a universal approach. We initially developed the 

concept and coined the expressions of SOE and DDNA 

in Sanin, Szczerbicki 2008, and  Zhang et al 2016. 

Since then our research efforts resulted in widespread 

recognition of this innovative KR technique based on 

DNA metaphor that is presented as multi-technology 

shareable knowledge structure for decisional experience 

with proven security and trust in Sanchez et al 2014, 

Sanin et al 2012a, Shafiq et al 2014a, Sanin et al 2012b, 

Wang et al 2015. Subsequently, DDNA was used to 

develop Virtual Engineering Object (VEO)  and Virtual 

Engineering Process  (VEP) as presented next. 
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3. VIRTUAL ENGINEERING OBJECT (VEO) 

VEO is developed on the concept of cradle-to-grave 

approach, which means that the contextual information 

and decision-making regarding an engineering object 

right for its inception until its useful life is stored or 

linked in it. The knowledge representation technique of 

Set of experience knowledge structure (SOEKS) and 

Decisional DNA (DDNA) ((Sanin Szczerbicki 2005, 

2006, 2009, Sanin et al 2007, Zhang et al 2010) is used 

for developing this model. SOEKS-DDNA provides 

dynamicity to VEO to overcome issues related to 

representation of complex and discrete objects (Shafiq 

et al 2014b). 

VEO of an engineering object implies that knowledge 

and experience related with that object is stored in a 

structured manner in a repository. This information not 

only can be used for decision-making regarding its 

better operational performance but also can be utilized 

in areas like maintainability, serviceability and 

reliability of the object. The concept VEO involves the 

interlinking of the body of knowledge of connected 

objects, with the aim of constructing subclasses 

consistent enough for the purposes of the classification 

scheme. 

A VEO can encapsulate knowledge and experience of 

every important feature related with an engineering 

object. This can be achieved by gathering information 

from six different aspects of an object: Characteristics, 

Functionality, Requirements, Connections, Present 

State, and Experience, as illustrated in Figure 4. 

 

 
 

Figure 4: Architecture of a VEO 

 

In each VEO model, the collection of SOEKS combines  

to form VEO-DNA (see Fiure. 4) Thus, a VEO is 

knowledge representation of an engineering artefact, 

and it has three vital features (Shafiq et al 2015a, 

2015b) 

• the embedding of the decisional model 

expressed by the set of experience, 

• a geometric representation and 

• the necessary means to relate such 

virtualization with the physical object being 

represented. 

 

 

4. VIRTUAL ENGINEERING PROCESS (VEP) 

The next step in our modelling process is the extension 

of VEO concept to engineering process or process 

planning. Dynamic manufacturing environments require 

a flexible process planning and control system in 

response to changing manufacturing resource 

availability, production uncertainty and dynamic 

machining conditions. 

Process planning involves selection of necessary 

manufacturing processes. It includes determination of 

manufacturing sequences and the selection of resources 

needed to ‘transform’ a design model into a physical 

component. Therefore, a general, adaptive, resource 

efficient and experience-based framework with VEP 

modules comprising VEO is developed. VEP is 

designed for knowledge representation and decision-

making at the shop floor level. 

The VEP information model encompasses multiple 

perspectives of different machining stages and scales, 

from process planning, machining, to machining 

feedback which is presented in the next Section. 

 

4.1. Architecture of VEP 

 

Process planning is combination of information 

regarding the operation required, manufacturing 

sequence, and machines required. In addition to this, for 

VEP, information of all the VEOs of the resource 

associated with the process is also required. Therefore, 

to encapsulate knowledge of the above-mentioned 

areas, the VEP is designed having following three main 

elements or modules (see Figure 5): 

 

 
Figure 5: Configuration of a VEP and network with 

VEOs 

 

 (i) Operations -  In this module of VEP, all the 

information related with the operations that are required 

to manufacture an engineering object is stored. This 

includes knowledge in the form of SOEKS related to 

operation process and scheduling. Furthermore, 

functional dependencies between operations are also 

part of operations. These are sub categorized and their 

interaction planning functions are given below: 
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• Scheduling route – based on global and local 

geometry. 

• Processes – process capabilities, process cost. 

• Process parameters – tolerance, surface finish, size, 

material type, quantity, urgency. 

(ii) Resources - Information based on the past 

experience about resources used to manufacture a 

component mentioned in operations module of VEP is 

stored here. The knowledge of the machine level stored 

in this section is as follows: 

• Machine and tool selections –machine availability, 

cost machine capability, size, length, cut 

length, shank length, holder, materials, 

geometry, roughing and finishing. 

• Fixture selection – fixture element function, 

locating, supporting, clamping surfaces, 

stability. 

Furthermore, the information of VEO categorized under 

Characteristics, Requirements, Functionality, Present 

state, Connections, Experience is also linked in this 

section 

(iii) Experience - In the experience section, links to the 

SOEKS of VEOs along with VEP having past formal 

decisions to manufacture engineering components are 

stored. They represent the links to SOEKS based on 

past experience on that particular machine to perform 

given operation along with operational and routing 

parameter. 

As demonstrated in Figure 5, VEP is also envisaged on 

cloud computing platform to facilitate delivery of 

compressed information on complex interrelationships 

within the modelled process. 

 

5. FMS MODELLING FRAMEWORK AND ITS 

IMPLEMENTATION 

The Decisional DNA based FMS is designed and 

developed to enable the FMS to capture formal 

decisional events and to capture, extract, reuse, and 

share knowledge.  

As discussed in section 4, that VEO is a knowledge 

representation of engineering artefacts. In this study 

each physical component of FMS is considered as a 

VEO and correspondingly knowledge models are 

developed for every machine and job i.e. M1-VEO, M2-

VEO, M3-VEO, M4-VEO, M5-VEO, M6-VEO, JI-

VEO, J2-VEO etc. Each VEO knowledge model having 

information regarding its characteristic, functionality, 

requirement, connections, present-state and experience 

(see Figure 5.) of the physical object. Furthermore, 

adhering to the structure of SOEKS-DDNA, for each 

module, information is structured according to 

variables, function, constant and rules related with 

every formal decision. On the same pattern information 

of characteristics, requirement, connections, present 

state, functionality related to M1-VEO are gathered.  

CSV files storing SOEKS were generated through arena 

simulation software for M1-VEO, M2-VEO, M3-VEO, 

M4-VEO, M5-VEO, M6-VEO, JI-VEO.  

Moreover, the routing flexibility is treated as a process 

and a DDNA based VEP model is developed. SOEKS 

for VEP elements: operations, resources and experience 

were also stored in CSV file. For each VEP elements 

i.e. operations, resources and experience; SOEKS 

variables, functions constraint and rules are defined. 

Having these files, a parser is written in Java 

programming language to read SOEKS stored in the 

CSV format. Parser looks for CSV file, in that file it 

looks for the word ‘variables’, then starts reading the 

first row under variables. Once all the variables of the 

first row are read then the parser looks for the word 

‘functions’, it reads all the rows under functions. 

After that it looks for word ‘constraints’ and read all the 

rows under constraints. This entire information i.e. first 

row under ‘variables’, all rows under ‘functions’ and 

‘constraints’ are stored as one set of experience 

(SOEKS or SOE). 

This cycle is repeated for all rows under ‘variables’, for 

each row along with functions and constraints, SOEKS 

are created. 

Same procedure is repeated for the all the other CSV 

files. Each file representing a category, collection of 

SOEKS of same category forms a chromosome of either 

of VEO or VEP. Collection of all chromosomes forms a 

Decisional DNA of a FMS i.e. FMS-DNA as shown in 

Figure 6. Once the VEO chromosome is constructed, 

decisional DNA has feature that it can be queried. 

Once all the relevant experience of FMS-VEP and 

associated VEO’s is captured, entire process planning 

and control of FMS can be virtually represented.  

Moreover, this experience can be utilized for future 

performance evaluation of similar FMS scenario. This 

approach will not only be beneficial for better resource 

utilization but also in cost-effective quality production. 

Figure 6 shows the proposal for the case study. First, 

VEOs of machines/resources (M1-VEO, M2-VEO, M3-

VEO, M4-VEO, M5-VEO, M6-VEO, J1-VEO etc.) 

required for the functioning of FMS developed. Then 

the VEP to decide the routing flexibility is developed 

based on the case-specific experience of that 

manufacturing system. VEOs along with experience of 

engineering process (VEP) form an FMS experience 

repository. JAVA programming language is used to 

develop and implement this concept. 
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Figure: DDNA based FMS Model 

 

The VEP repository can be queried by the GUI, which 

makes similarity comparisons with each experience 

stored and returns the most similar SOEKS. Mechanism 

for query execution in presented in Figure 7; Euclidean 

distance is calculated between the query-SOE and each 

VEP-SOE present in the FMS-DNA repository. SOE 

with the least value is considered as the best SOE or 

most similar SOE. 

 

 
Figure 7:  Mechanism for effective decision making 

 

 

6. EXPERIMENTAL RESULTS 

 

A number of sample queries were executed to find the 

most similar SOEKS. For example, in query 1, VEP 

similarity is calculated for a product with RF1 when 

MST = 4200, cost = 17300, Machine Utilization = 80% 

and Queue waiting time = 5.3.  Figure 8(a) illustrates 

the outcome of the execution of this query. FMS-DNA 

returns the top most similar SOEKS which in this 

particular case is VEP1 having similarity 0.0502. The 

query also returns the codes of M1-VEO for the most 

similar VEO-Code. This enables to fetch all the micro 

level details of Machine 3 at M3-1 code corresponding 

to most similar VEP- SOEKS. This previous FMS 

experience of the RF, machines and the jobs can 

beneficial not only for the design but also in 

performance evaluation. 

 

 

 
Figure 8(a):  Similarity index for query 1 at RF1 

 
 

. 

Figure 8(b): Similarity index for query 2 at RF2 

 

 
Figure 8(c): Similarity index for query 3 at RF3 

 

 
Figure 8(d):  Similarity index for query 4 at RF4 
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Different query 2, 3 and 4 are executed when FMS is 

executed at RF2, RF3 and RF4 respectively; results are 

presented in Figures 8(b), 8(c) and 8(d). The  output of 

these queries shows the top most similar VEP 

experiences along with the experiences of the machines 

involved. Thus, the entire experience at routing level, 

machine and job level can be retrieved and can be used 

to enhance effective decision making and performance 

evaluation in possible future queries. 
 

7. CONCLUSIONS 

Decisional DNA based experience model for a typical 

FMS is developed, which is capable of capturing and 

storing formal decisional events both at the process as 

well as at the object level. Similarity of previous 

experience is calculated with current requirement. 

Designing and planning issues of FMS can be solved 

mainly by this modelling technique. This technique 

induces intelligence as the database containing 

information of FMS installation has an interrelation 

between VEP and VEO features. Moreover, since each 

component of the FMS has a virtual model and can 

operate individually and also together with the wider 

range of production.  
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