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ABSTRACT 
We consider a problem of sequential detection of 
changes in general time series, in which case the 
observations are dependent and non-identically 
distributed, e.g., follow Markov, hidden Markov or 
even more general stochastic models. It is assumed that 
the pre-change model is completely known, but the 
post-change model contains an unknown (possibly 
vector) parameter. Imposing a distribution on the 
unknown post-change parameter, we design a mixture 
Shiryaev-Roberts change detection procedure in such a 
way that the maximal local probability of a false alarm 
(MLPFA) in a prespecified time window does not 
exceed a given level and show that this procedure is 
nearly optimal as the MLPFA goes to zero in the sense 
of minimizing the expected delay to detection uniformly 
over all points of change under very general conditions. 
These conditions are formulated in terms of the rate of 
convergence in the strong law of large numbers for the 
log-likelihood ratios between the “change” and “no-
change” hypotheses. An example related to a 
multivariate Markov model where these conditions hold 
is given. 

 
Keywords: asymptotic optimality, change-point 
detection, composite post-change hypothesis, quickest 
detection, weighted Shiryaev-Roberts procedure 

 
1. INTRODUCTION 
The problem of quick detection of abrupt changes in 
time series arises in different areas related to automatic 
control, segmentation of signals, biomedical signal 
processing, quality control engineering, finance, link 
failure detection in communication networks, intrusion 
detection in computer systems, and target detection in 
surveillance systems. See, e.g., Basseville and 
Nikiforov (1993), Kent (2000), Page (1954), 
Tartakovsky, Nikiforov, and Basseville (2015) and 
references therein. One of a challenging application area 
is intrusion detection in computer networks [Kent 
(2000), Tartakovsky et al., Rozovskii, Blažek (2006)]. 
Large scale attacks, such as denial-of-service attacks, 

occur at unknown points in time and need to be detected 
in the early stages by observing abrupt changes in the 
network traffic.  
 
In the change point analysis, a large variety of 
observation models is used which include i.i.d. 
sequences of random variables whose distributions 
change at the disruption time and also different models 
with dependent observations. Many papers have been 
devoted to the problem of detecting abrupt changes of 
the parameters in autoregression and Markov processes, 
which are widely used in the statistical analysis of time 
series and statistics of random processes. There is a vast 
literature on the detection of abrupt parameter changes 
in Markov time series with known probabilistic 
characteristics. See, for example, Basseville and 
Nikiforov (1993), Lai (1998), Pergamenshchikov and 
Tartakovsky (2018), Yakir (1994) and references 
therein. 
 
The present paper addresses a general non-i.i.d. model 
when the post-change distribution contains an unknown 
parameter. Using the analytical results obtained in 
Pergamenshchikov and Tartakovsky  (2018), we 
establish very general conditions under which the 
mixture Shiryaev-Roberts detection procedure is 
asymptotically optimal, minimizing the expected delay 
to detection in the class of change detection procedures 
with the given maximal local probability of a false 
alarm when this probability is small.  
 
2. PROBLEM 
Consider the change-point problem for the general 
dependent non-i.i.d. model (time series) ( ) 1≥kkx  
specified by the conditional densities of kx  given 

( )11  ,..., −kxx , denoted as ( )( )11,  ,...,  −kkk xxxf νθ , where θ  
is an unknown parameter. More precisely, we assume 
that the conditional density changes from 
( )11*   ,...,  −kk xxxf  to ( )11   ,...,  −kk xxxfθ  at a point ν , 

i.e. 
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( )( ) ( ) { }ν
ν
θ ≤−− = kkkkkk xxxfxxxf 1	11*11,  ,...,   ,...,   

              ( ) { }νθ >−+ kkk xxxf 1 11   ,...,  . (1) 
 
Assume that the conditional densities 
 

( )( ) 111*  ,...,  
≥− kkk xxxf   (2) 

 
are known, the change point ν  is a nonrandom 
unknown integer and one needs to detect the change as 
soon as possible after it occurs. Introduce the class of 
detection procedures m,αM  defined by stopping times 
τ  such that 
 

( ) ατ ≤+≤≤
≥

mkk
k

*
1

supP ,  (3) 

 
where *P  is the distribution generated by the family (2), 

10 <<α  is a preassigned upper bound for the false 
alarm probability and m  is a suitably chosen window 
size. In the sequel, we denote by νθ ,P  the distribution of 
the process ( ) 1≥kkx  defined by the family of the 
conditional densities (1). 
 
Our goal is to find an optimal change-point detection 
procedure which minimizes the conditional average 
delay time, i.e., 
 

( )ντντνθ
τ α

≥−
∈

  inf ,
,

E
mM

     for all 0≥ν   

 
where νθ ,E  is the expectation with respect to the 
distribution νθ ,P . However, finding a strictly optimal 
detection procedure in the problem (4) is very difficult, 
if at all possible. For this reason, we consider an 
asymptotic problem of finding a first-order 
asymptotically optimal rule that satisfies 
 

( )
( ) 1

  

.  inf
lim

,

,

0

, =
>−

>−
∈

→ ντντ

ντντ

νθ

νθ
τ

α

α

E

E
mM

.  (4) 

 
3. MAIN RESULTS 
 
3.1. The Information Lower Bound 
To study the optimality properties for the detection 
procedures we use the lower bound obtained in 
Pergamenshchikov and Tartakovsky (2018):  
 

( )
( )θα

ντντνθτ

α

α

I
m 1

ln

  inf
liminf ,

0

, ≥
≥−∈

→

EM , (5) 

 
where ( )θI  is the generalized Kullback-Leibler 
information number. This asymptotic lower bound 

holds whenever the log-likelihood ratio (LLR) obeys 
the strong law of large numbers: 
 

( )
( ) ( )

a.s.      as
, ... ,  
, ... ,  

log1

,

1 11*

11

−∞→

→∑
+

+= −

−

k

nk

kt tt

tt

n

I
xxxf
xxxf

n

θ

θ θ

P
  (6) 

 
3.2. The Mixture Shiryaev-Roberts Procedure 
Moreover, in this paper using the modified Shiryaev - 
Roberts procedures proposed in Pergamenshchikov, S. 
M. and Tartakovsky, A.G. (2018) we construct a special 
weighted procedure *T  which belongs to the class 

m,αM . 
Let ( )θW  be a distribution on the parameter space Θ . 
Define the likelihood ratio (LR) mixture as 
 

( )
( )
( ) ( )θθ dW

XXXf
XXXf

W
n

ki iii

iiik
n ∫ ∏

Θ += −

−=Λ
1 11,0

11,

,...,  
,...,  

, kn > .  

 
In what follows, we assume that ( )θW  is quite arbitrary 
satisfying the condition 
( )WC  For any 0>δ , the measure W  is positive on 

{ }δθ <−Θ∈ uu   :  for any Θ∈θ , i.e.,  
 
{ } 0  : ><−Θ∈ δθuuW .   

 
This condition means that we do not consider parameter 
values of θ  from Θ  of the measure null.  
 
Introduce the Shiryaev-Roberts (SR) statistic 
 

( )
( )
( )∑∏

= = −

−=
n

k

n

ki iii

iii
n XXXf

XXXf
R

1 11,0

11,

,...,  
,...,  θθ . 

Note that it is tuned to Θ∈θ . In this paper we use  the 
mixture SR statistic 

Rn
W = Λn

k W( )
k=1

n

∑ ≡ Rn θ( )
Θ

∫ dW θ( ) , 1≥n , 

00 =WR . 
The associated detection procedure, which we will call  
the Mixture Shiryaev-Roberts (MiSR) detection 
procedure, is given by the stopping time 
 

{ }aRnT W
na ≥≥= log  :1inf , { } +∞=∅inf  (7) 

 
where −∞>a  is a threshold controlling for the false 
alarm risk. Write *

*
aTT = , where *a  is some function 

of α  which goes to ∞  as 0→α . Using a left-tail 
complete convergence condition in the strong law (6), 
which usually holds under “concentration” conditions 
for the LLR process, it can be shown that along with the 
lower bound (5) the following upper bound holds: 
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( )

( )θα

ντννθ

α I
T 1

ln
  

suplim
*

,

0
≤

≥−

→

E
. (8) 

 
Note that it follows from the bounds (5) and (8) that the 
proposed MiSR procedure is asymptotically optimal 
since the asymptotic equality (4) holds for *TT = .  
 
As an example for which we check the strong law of 
large numbers (6) and “concentration” conditions for 
the LLR process, we consider the change point 
detection problem for the autoregressive model. 
Specifically, assume that ( ) 1≥kkx  is the autoregressive 
process of order p : 
 

kpkpkk xaxax ε+++= −− ...11 , (9) 
 
before the change time ν , i.e. for ν≤k , and 
 

kpkpkk xxx εθθ +++= −− ...11 , (10) 
 
after ν . Here ( ) 1≥kkε  is i.i.d. sequence of random 
Gaussian variables with the parameter (0,1). The 
parameters ( )paaa   ,...,1=  are known and, the 

parameters ( ) ap ≠= θθθ  ,...,1  are unknown. We assume 
that both processes (9) and (10) are stable, that is all 
roots of the corresponding characteristic polynomials lie 
inside the unit circle of complex plane. For this 
example, the procedure *T  is asymptotically optimal 
with 
 

( ) ( ) ( )
2

' 1 aFaI −−
=

− θθ
θ , 

 
where F is the covariance matrix of order p for the 
stationary process (10) which is given in Example 5 in 
Pergamenshchikov and Tartakovsky (2018). 
 
4. MONTE CARLO SIMULATIONS 
In this section, through the Python software we provide 
Monte Carlo (MC) simulations for the AR(1) model, 
which is a particular case of (9) – (10) for 1=p . 
Specifically, let the pre-change value a = 0 and the 
post-change value 
 { }Nθθθ  ,..., 1=Θ∈ , 1...1 1 <<<<− Nθθ , 0≠iθ .  
We set 
 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= −
−− 2

  exp ,
2

1
2

11
n

nnnnn
X

XXXXL
θ

θθ , 1≥n .  

 
The MiSR stopping time is written as 
 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥≥= ∑
=

a
N

j
jnja eRWnT

1
   :1inf θθ ,  

 
where the SR statistic Rn θ( )   satisfies the recursion 

 
( ) ( )[ ] ( )111  , 1 +++ += nnnnn XXLRR θθθ , 1≥n , ( ) 00 =θR . 

 
Thus, the MiSR procedure can be easily implemented. 
The generalized information number 
I(θ ) =θ 2 [2 (1−θ 2 )] , so the first-order 
approximation yields the following approximate 
formula for the average delay to detection 

( ) ( )ννθνθν >−= aaa TTTADD   ,, E : 
 

( ) ( ) ( )
2

2

,,
 1 2

θ

θ
θνθν

aTADDTADD a
app

a
−

=≈ . (11) 

 
In the MC simulations, we set 
 

} 908070605040302010
102030405060708090 {

., ., ., ., ., ., ., ., .           
,., -., -., -,, -., -., -., -., -.-=Θ
 

 
and uniform prior ( ) 181=jW θ . The results are 

presented in Table 1 for the upper bound on the 
maximal local probability of false alarm (LPFA) 

01.0=β  and the number of MC runs 510 . In the table, 
we compare operating characteristics of the MiSR rule 
aT  with that of the SR rule 

 
( ){ }BRn nB ≥≥= θτ   :1inf .   

 
The thresholds a  and B  (shown in the table) were 
selected in such a way that the maximal probabilities of 
false alarm of both rules ( ( )aTLPFA  and ( )* BTLPFA ) 
were practically the same.  
 
Table 1: Operating Characteristics of the MiSR and SR 

Detection Procedures 
01.0=β , 0=ν  

θ  ae  ( )aTADD  ,θν  ( )aTLPFA    
0.9 395 11.74 0.0080 
0.8 420 14.72 0.0073 
0.7 440 18.97 0.0070 
0.6 470 25.32 0.0065 
0.5 595 36.35 0.0049 
0.4 1040 59.57 0.0024 

 
0=ν , 791=B  

θ  ( )BADD τθν  ,  ( )BLPFA τ  ( )aapp TADD  ,θν  
0.9 11.08 0.0079 2.81 
0.8 13.72 0.0073 6.80 
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0.7 17.52 0.0071 12.67 
0.6 23.15 0.0065 21.88 
0.5 31.84 0.0049 38.33 
0.4 45.88 0.0025 72.94 

 
01.0=β , 10=ν  

θ  ae  ( )aTADD  ,θν  ( )aTLPFA    
0.9  395  10.05  0.0080  
0.8  420  12.72  0.0073  
0.7  440 16.59  0.0070  
0.6  470  22.55  0.0065  
0.5  595  32.96  0.0049  
0.4  1040  55.34  0.0024  

 
10=ν , 791=B  

θ  ADDν ,θ  τ B( )  ( )BLPFA τ  ( )aapp TADD  ,θν  

0.9  9.62  0.0079  2.81 
0.8  11.98  0.0073  6.80 
0.7  15.30  0.0071  12.67 
0.6  20.34 0.0065 21.88 
0.5  28.01  0.0049  38.33 
0.4  40.83  0.0025  72.94 

 
It is seen that for relatively large values of the post-
change parameter, 6.0≥θ , the SR rule only slightly 
outperforms the MiSR rule, but for small parameter 
values (i.e., for close hypotheses) the difference 
becomes quite substantial. The worst change point is 

0=ν , as expected. Also, the first-order approximation 
(11) is not too accurate, especially for small and large 
parameter values.  
 
5. REMARKS 
1. Despite the fact that the MiSR procedure is first-
order asymptotically optimal for practically arbitrary 
weight function ( )θW  that satisfies condition ( WC ), for 
practical purposes its choice may be important. In fact, 
selection of the weight W  affects higher-order 
asymptotic performance, and therefore, real 
performance of the detection procedure. For example, if 
the set Θ  is continuous, one has to avoid ( )θW  that 
concentrates in the vicinity of a specific parameter value 
1θ  since in this case the MiSR procedure will be nearly 

optimal at and in the vicinity of 1θ  but will not have a 
good performance for other parameter values. The 
choice of ( )θW  is also related to the computational 
issue. It is reasonable to select the weight as to be in the 
class of conjugate priors, if possible, or to select a 
uniform prior if Θ  is compact. A substantial 
simplification occurs when { }Nθθ  ,..,1=Θ  is a finite 
discrete set. If the observations are i.i.d., then in the 
discrete case, it is possible to find an optimal (in a 
certain sense) weight using the approach proposed by 
Fellouris and Tartakovsky (2013) for the hypothesis 
testing problem. 

2. The traditional constraint on the false alarm risk in 
minimax changepoint detection problems is the lower 
bound on the average run length to false alarm 
(ARL2FA) [ ] 1≥≥∞ γτE . This measure of false alarms 
makes sense when the distribution of the stopping time 
τ  (in our case of aT ) is approximately geometric. This 
is typically the case (at least asymptotically as ∞→a ) 
for i.i.d. data models [Pollak and Tartakovsky (2009), 
Yakir (1995)]. However, apart for the i.i.d. case there is 
no any result on the asymptotic distribution of the 
stopping time aT  (as ∞→a ), so for general non-i.i.d. 
models of interest in the present paper this is not 
necessarily true. Therefore, the usefulness of the 
ARL2FA is under the question, as discussed in detail in 
Tartakovsky et al. (2015). In fact, in general, large 
values of the ARL2FA do not guarantee small values of 
the maximal local PFA ( )kmkk ≥+<∞≥ ττ   sup 1 P . 
But the opposite is always true since the maximal local 
PFA is a more stringent false alarm measure in the 
sense that if it is small, then the ARL2FA is necessarily 
large. This argument motivated us considering the 
maximal local PFA instead of the conventional 
ARL2FA. 
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