The hardware implementation of the multi-position signal digital demodulators

  • Oleg V. Chernoyarov  ,
  • Alexey N. Glushkov  ,
  • Vladimir P. Litvinenko  ,
  • dAlexander N. Faulgaber  ,
  • eAlexandra V. Salnikova  
  • a,d,e National Research University “Moscow Power Engineering Institute”, Moscow, Russia
  • a,e International Laboratory of Statistics of Stochastic Processes and Quantitative Finance of the National Research Tomsk State University, Tomsk, Russia
  • a Maikop State Technological University, Maikop, Russia
  • b Voronezh Institute of the Ministry of Internal Affairs of the Russian Federation, Voronezh, Russia
  • c,e Voronezh State Technical University, Voronezh, Russia
Cite as
Chernoyarov O.V., Glushkov A.N., Litvinenko V.P., Faulgaber A.N., Salnikova A.V.  (2019). The hardware implementation of the multi-position signal digital demodulators. Proceedings of the 31st European Modeling & Simulation Symposium (EMSS 2019), pp. 54-58. DOI: https://doi.org/10.46354/i3m.2019.emss.010.

Abstract

There are considered the capabilities of the hardware implementation of the digital demodulators when receiving the signals of various modulation formats. It is shown that the multi-position signal processing devices can be implemented by means of the on the relatively inexpensive field programmable gate arrays.

References

  1. Feher K., 1995. Wireless Digital Communications. Modulation and Spread Spectrum Applications. New Jersey: Prentice-Hall.
  2. Sklar B., 2001. Digital communications: fundamentals and applications. New Jersey: Prentice-Hall.
  3. Proakis J. and Salehi M., 2007. Digital communications. New York: McGraw-Hill.
  4. Chernoyarov O.V., Glushkov A.N., Litvinenko V.P., Litvinenko Yu.V. and Matveev B.V., 2018. Digital demodulator of the quadrature amplitude modulation signals. Measurement Science Review, 18 (6), 236-242.
  5. Glushkov A.N., Litvinenko V.P., Matveev B.V., Chenoyarov O.V. and Kalashnikov K.S., 2016. Hardware implementation of radio signals fast digital detection and demodulation algorithms. Proceedings of the 2016 International Conference on Communications, Information Management and Network Security (CIMNS2016), pp. 303-306, September 25-26, Shanghai (China).
  6. Chernoyarov O.V., Litvinenko V.P., Glushkov A.N., Matveev B.V. and Salnikova A.V., 2017. Digital demodulation of the signals phase-shift keyed in toto and coded by Walsh sequences. Proceedings of IEEE International Conference on Power, Control, Signals & Instrumentation Engineering (ICPCSI), pp. 1-5. September 21-22, Chennai (India).
  7. Glushkov A.N., Litvinenko V.P., Matveev B.V., Chernoyarov O.V. and Salnikova A.V., 2015. Basic algorithm for the coherent digital processing of the radio signals. Proceeding of the 2015 International Conference on Space Science & Communication (IconSpace), pp. 389-392. August 10-12, Langkawi (Malaysia).
  8. Chernoyarov O.V., Glushkov A.N., Litvinenko V.P., Litvinenko Yu.V. and Matveev B.V., 2017. Fast digital algorithms for the coherent demodulation of the phase-shift keyed signals. Proceedings of 2017 IEEE Dynamics of Systems, Mechanisms and Maсhines (Dynamics), pp. 12-16. November 14-16, Omsk (Russia).
  9. Chernoyarov O.V., Glushkov A.N., Litvinenko V.P., Litvinenko Yu.V. and Matveev B.V., 2018. Fast digital algorithms for the non-coherent demodulation of the differential phase-shift keyed binary signals. International Review of Electrical Engineering, 13 (4), 334-341.
  10. Andina J.J.R., de la Torre Arnanz E. and Valdes M.D., 2017. FPGAs: Fundamentals, advanced features, and applications in industrial electronics. 1st ed. Boca Raton: CRC Press.
  11. Xilinx DS160 Spartan-6 family overview, 2011. San Jose: Xilinx Inc.
  12. 7 Series FPGAs data sheet: Overview, 2018. San Jose: Xilinx Inc.
  13. Parab J.S., Gad R.S. and Naik G.M., 2018. Hands-on experience with Altera FPGA development boards. Delhi: Springer India.