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ABSTRACT 

The problem is considered of the phase and frequency 

estimation by the observations of periodic Poisson 

processes in the cases of different regularity conditions: 

smooth signals, cusp-type singular signals and change-

point type signals. There is described the asymptotic 

behavior of the mean square errors in all these situations 

and then the results of numerical simulations are 

presented. 

 

Keywords: Poisson signal, maximum likelihood 
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1. PROBLEM STATEMENT 

 

1.1. The model of the realization of the observable 

data 

Let us consider the problem of transmission of 

information 0ϑ  by a Poisson channel with the dark 

noise having the intensity of 0>λN . It is presupposed 

that the optical signal (inhomogeneous Poisson process) 

has an intensity function ( )tS ,0ϑ , Tt ≤≤0 , where 

( )tS ,0ϑ  is periodic function. Therefore, the 

observations ( )TtXX t
T ≤≤= 0 ,  is Poisson process 

with the intensity function 
 

( ) ( ) . 0     , ,, 00 TttSt N ≤≤λ+ϑ=ϑλ   

 
The behavior of the mean square error (variance) is 

studied under ∞→T : 
 

( ) ,
2

0
γ

ϑ =ϑ−ϑ TCTE   (1) 

 

where Tϑ  is a certain estimator of the parameter 0ϑ , 

0>C  is a constant and the value 0>γ  depends on the 

regularity of the function ( )tS ,0ϑ  with respect to 0ϑ . 

 

1.2. The estimators of the informative parameter 

Let us introduce the likelihood ratio function 
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Then, the two most commonly used estimators of the 

parameter 0ϑ  can be formed: maximum likelihood 

estimator (MLE) Tϑ̂ : 

 

( ) ( )TT
T XLXL ,sup,ˆ ϑ=ϑ

Θ∈ϑ
  (2) 

 

and Bayesian estimator (BE) 

 

( ) ( ) ( ) ( ) .d , d , 
~

∫∫
ΘΘ

ϑϑϑϑϑϑϑ=ϑ TT
T XLpXLp   

 

Here Θ is the area of possible values, ( )ϑp  is the 

positive continuous prior probability density of the 

parameter 0ϑ  and the quadratic loss is presupposed. 

 

1.3. Modulations 

P. Phase modulation: ( ) ( )ϑ−=ϑ tftS ,  

F. Frequency modulation: ( ) ( )tftS ϑ=ϑ,  

Here and hereinafter ( )tf  is the periodic function of the 

known period. 

 

1.4. Regularity 

S. Smooth case. The function ( )tf  is continuously 

differentiable. 

C. Cusp-type case. The function ( )tf  has the following 

representation on the first period: ( ) ( )thtatf +=
κ

, 
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where 0>a , ( )21,0∈κ , and ( ) 0>th  is continuously 

differentiable. 

D. Discontinuous case. The function ( )tf  has the 

following representation on the first period: 

( ) { }ϑ>= tatf 1 . 

The following theoretical results have been obtained for 

the MLE Tϑ̂  and BE Tϑ
~

: 

PS case, i.e. phase modulation and smooth ( )tf  

(Kutoyants 1979): 

 

( ) . 1      ,~ˆ 2

0 =γϑ−ϑϑ TCTE  (3) 

 

PC case, i.e. phase modulation and cusp-type ( )tf  

(Dachian 2003): 

 

( ) ( ) ( ) . 21221  ,~ˆ 1222

0 <+κ=γ<ϑ−ϑ +κ
ϑ TCTE  (4) 

 

PD case, i.e. phase modulation and discontinuous ( )tf  

(Kutoyants 1979): 

 

( ) . 2      ,~ˆ 22

0 =γϑ−ϑϑ TCTE  (5) 

 

FS case, i.e. frequency modulation and smooth ( )tf  

(Kutoyants 1979): 

 

( ) . 3      ,~ˆ 32

0 =γϑ−ϑϑ TCTE  (6) 

 

FC case, i.e. frequency modulation and cusp-type ( )tf : 

 

( ) ( ) ( ) . 4
12

44
3   ,~ˆ

1244

2

0 <
+κ
+κ

=γ<ϑ−ϑ
+κ+κϑ

T

C
TE  (7) 

 

FD case, i.e. frequency modulation and discontinuous 

( )tf  (Kutoyants 1984): 

 

( ) . 4      ,~ˆ 42

0 =γϑ−ϑϑ TCTE  (8) 

 

With the use of simulations, the convergences 

 

( ) γ−→ϑ−ϑϑ TT lnˆln
2

0E   

 

are studied in all the cases specified above. The 

intensity functions in simulations are always 

 

( ) ( ) , 0     , 1,, 00 ∞→≤≤+ϑ=ϑλ nttSt  (9) 

 

where ( ) ( )ϑ−=ϑ tftS ,  and ( ) ( )tftS ϑ=ϑ,  in the cases 

of phase and frequency modulations, respectively. 

The function ( )tf  in smooth PS and FS cases of the 

phase and frequency modulations is ( ) ( )tatf π= 2cos2 , 

2=a , 0≥t . 

The function ( )tf  in cusp PC and FC cases is periodic 

of period 1 and it has the representation on the one 

period [ ]21,21−∈t  as follows 
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 (10) 

 

Here 2=a , 25.0=δ  and 41=κ . 

The function ( )tf  in change-point PD and FD cases of 

the phase and frequency modulations is periodic with 

the period 1: 
 

( ) { } , 1 0 δ≤≤= tatf   

 

where 10=a , 25.0=δ  and it is periodically prolonged 

along the whole line. 

In Fig. 1, the qualitative examples are shown of the 

signals with varying degree of smoothness (different 

types of singularity of intensity functions (10)) 

determined by the parameter κ: a) 85=κ ; b) 21=κ ; 

c) 81=κ ; d) 0=κ ; e) 83−=κ . 

 

 
Figure 1: The examples of the signals with different 

types of singularity of intensity functions 

 

The curve presented in Fig. 1a corresponds to the 

smooth case. Note that the derivative of this function is 

unbounded, but nevertheless the Fisher information is 

finite and this is a regular statistical experiment. The 

curve presented in Fig. 1b is like the smooth one as 

well, but the rate of convergence of the mean square 

error is slightly different: ( ) TTCT ln~ˆ 2

0ϑ−ϑϑE . 

The curves presented in Figs. 1c and 1d correspond to 

cusp-type and change-point type singularities, 

respectively. Finally, the curve presented in Fig. 1e 

corresponds to the explosion-type singularity, the 

properties of the estimators are also known in this case, 

but this type of singularity is not examined in our 

present research. 
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2. RESULTS OF SIMULATIONS 

 

The convergence of the experimental values of the 

variances of MLE (2) with the asymptotic formulas (3)-

(8) have been studied using simulation in programming 

language R. For non-stationary Poisson process, the 

simulation is carried out by the method of time scale 

conversion (Law 2014). 

In Figs. 2-6, the log-log plots (1) 

 

( ) ( ) ,lnln~ˆln,
2

0 TCTVV T γ−ϑ−ϑ=γ= ϑE  (11) 

 

of the variance of MLE (2) as a function of the number 

of signal periods N are presented where one can see 

some results of statistical simulation (circles, squares, 

pluses) and corresponding theoretical dependences 

(solid curves). The C parameter is estimated based on 

the simulation data by the least squares method. Each 

experimental value is obtained by processing no less 

than 310  realizations of Poisson process with the 

intensity function (9). Thus, with the probability of 0.9, 

the confidence intervals boundaries deviate from the 

experimental values no greater than by 10 %. 

In Fig. 2, the dependences (11) are presented for all the 

three types of regularity in case of the phase 

modulations (P): smooth (3) – curve 1 and circles, cusp-

type (4) – curve 2 (if γ = 4/3) and squares, change-point 

(5) – curve 3 and pluses. 

Fig. 3 describes the similar situations but for the 

intensities with the frequency modulation (F): smooth 

(6) – curve 1 and circles, cusp-type (7) – curve 2 (if γ = 

10/3) and squares, change-point (8) – curve 3 and 

pluses. 

In the next three figures, there is shown the comparison 

of the errors (11) occurring in the cases when the same 

regularity is accompanied with different types of 

modulations. 

In Fig 4, the theoretical and experimental errors (11) are 

plotted for the cases of the phase (curve 1 and pluses) 

and frequency (curve 2 and pluses) modulations for 

smooth intensity functions, i.e. for PS and FS cases 

described by the formulas (3) and (6), respectively. 

 

 
Figure 2: The dependences of the variance of MLE of 

the Poisson signal in the case of phase modulations 

 

 
Figure 3: The dependences of the variance of MLE of 

the Poisson signal in the case of frequency modulations 

 

 

 
Figure 4: The dependences of the variance of MLE of 

the Poisson signal with smooth intensity function in the 

case of phase and frequency modulations 

 

The results presented in Fig. 5 correspond to the phase 

(curve 1 and squares) and frequency (curve 2 and 

squares) modulations for the intensities with cusp-type 

singularity, i.e. for PC and FC cases described by the 

formula (3) under γ = 4/3 and the formula (6) under γ = 

10/3, respectively. 

 

 
Figure 5: The dependences of the variance of MLE of 

the Poisson signal with cusp-type intensity function in 

the case of phase and frequency modulations 
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And finally, in Fig. 6, the dependences (11) are drawn 

for the phase-modulated (curve 1 and circles) and 

frequency-modulated (curve 2 and circles) signals with 

discontinuous intensities, i.e. for PD and FD cases 

described by the formulas (5) and (8), respectively. 

 

 
Figure 6: The dependences of the variance of MLE of 

the Poisson signal with discontinuous intensity function 

in the case of phase and frequency modulations 

 

One can see that the result of the simulations 

correspond well to the theoretical properties (3)-(8) of 

the mean square errors in a wide range of observations’ 

duration. 

 

3. CHOICE OF THE MODEL 

 

Therefore, it is natural to put the following question: 

What is the best choice of the intensity function and the 

estimator and what is the corresponding rate of decay 

of the mean square error? 

It should be noted that in statistics the observation 

model is usually presented and the problem is to 

understand what can be done to identify this model. 

Here the statement is different and one can choose the 

model to get less errors. 

The problem considered there is, in some sense, inverse. 

It is presupposed that one can choose any intensity one 

wants, and the goal is to find such function ( )t,0ϑλ  of 

( )1,00 =Θ∈ϑ  and [ ]Tt ,0∈  and the estimator *
Tϑ  that 

the rate of error decreasing is the best possible. Of 

course, one has to impose some restrictions on the 

”energy of the signal” (in terminology coming from 

telecommunication theory), since, if one allows that 

( ) ∞→ϑλ t,0 , then one will have any rate wanted. 

Let us fix some number 0>L  and introduce the class 

of intensity functions bounded by this constant 

 

( ) ( ) ( ){ }.  0  , ,0   : TtLtLF ≤≤≤ϑλ≤⋅λ=   

 

Then one gets the following result: 

 

( )
( ) ( )( ) . 11

6
expsupinfinf

2

0, 0
0







ο+−=ϑ−ϑϑλ

Θ∈ϑϑ∈λ

TL
T

LF T

E   

This relation contains two different results. 

The first one is a lower bound on the risks for all the 

choices of the intensity function (in ( )LF ) and all the 

estimators Tϑ : 

 

( )
( ) ( )( ) . 11

6
expsupinf

2

0, 0
0







ο+−≥ϑ−ϑϑλ

Θ∈ϑ∈λ

TL
T

LF
E   

 

The second result is to describe the intensity function 

( )⋅λ*  and such the estimator *
Tϑ  that (upper bound) 

 

( ) ( )( ) . 11
6

expsup
2

0
*

, 0*
0







ο+−≤ϑ−ϑϑλ

Θ∈ϑ

TL
TE   

 

Proofs can be found in the researches by Burnashev and 

Kutoyants (1999, 2001). Note that this result follows 

the spirit of Information Theory. 

 

4. CONCLUSION 

 

The goal of this research is to show how the rate of 

decreasing the mean square error of MLE depends on 

the regularity of the model. The large diversity of the 

rates can be seen due to the different types of the 

smoothness of the signals. There is another important 

class of problems: what are the errors of the estimators 

when the regularities of the statistical models real and 

theoretical are different. It is also proposed to present 

some results in such situations. 
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