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ABSTRACT 
Nested simulations present a general method suitable 
for use in realizing a multi-trajectory simulation or as 
a decision support in a simulator. The principle of 
nested simulation (as a decision support) is to find a 
solution to a problem using other time-limited 
simulations which verify alternative options. After the 
nested simulations have finished, the solutions of 
individual alternatives are assessed and the best solution 
is applied to the main simulation.  
The aim of this article is to test various exact and 
heuristic approaches to reduce the computational 
complexity of nested multi-simulations. The basic 
method uses the recorded states from previous 
simulations to avoid duplicate calculations leading to 
the same states. Other measures are heuristic and are 
based on the detection of similar states/replications 
during the calculation. 

 
Keywords: nested simulations, decision support, rail 
transport 

 
1. INTRODUCTION 
The stochastic simulator requires implementation of 
some of the decision support techniques. There are 
a number of ways to solve conflicting situations - from 
leaving the solution to the user (interactive mode of 
simulation) through various complex mathematical 
models (fuzzy logic, artificial neural networks, ...). 
Even though there are a number of complex decision 
support techniques, in practice, one of the easiest 
methods - priority planning - is often implemented in 
microscopic railway simulators. This method is used in 
OpenTrack, Villon and other rail simulators. 
Nested or recursive simulations represent another 
methodology that can be used to support decision 
making in simulators. The principle of the method 
consists in suspending the actual main simulation at the 
moment when the conflict situation occurs and the 
simulation is then cloned into several variants. 
Individual clones have modified parameterization to 
allow testing of different options for resolving the 
conflict situation. These nested/recursive simulations 
(basically different outlooks for the future within 
a limited time horizon) are triggered, and after a certain 
period of time, it is evaluated which one has the best 
results. The optimal one is then used as a solution and 

the main simulation continues only with the chosen 
variant. Nested simulations are implemented and tested 
as experimental decision support in the developed 
MesoRail simulation tool (Diviš and Kavička 2015). 
The aim of this paper is to describe possible exact and 
heuristic algorithms designed to optimize nested 
simulation calculations. The aim of each method is to 
reduce the machine time required for simulation 
experiments. The proposed methods use different 
techniques based mainly on recording reached states 
during simulations to speed up future calculations.  

 
1.1. Brief overview of the state-of-the-art 
It has to be declared that not many authors pay attention 
to the research of nested/recursive simulations.  
The authors Gilmer and Sullivan were focused in 
several of their articles on the efficiency of higher 
number of replications in contrast with multi-trajectory 
simulation (Gilmer and Sullivan 1999). Their main 
interest is related to the military simulator Eaglet, which 
simulates the movement of military units of two armies 
and their mutual interactions. 
Eugen Kindler (as a pioneer of nested simulation in 
Europe) published many articles with the focus on both, 
the theoretical description of nested simulations 
(classification, terminology, etc.) and their applications 
in practice (Kindler 2010). 
The issue of a planning support system is discussed by 
Hill, Surdu, Ragsdale, and Schafer (2000). Those 
authors were engaged in military planning.  
Another area of applied nested simulations is connected 
with scalable simulation models, which allow applying 
both a macroscopic and a microscopic level of 
investigation within the frame of one simulator (Bonté, 
Duboz, Quesnel and Muller 2009). Another area of 
exploiting nested simulations is financial a risk 
management – e.g. Gordy and June (2010).  
 
2. POSSIBLE APPROACHES TO THE USE OF 

NESTED SIMULATIONS 
The method of nested/recursive simulations presents 
a principle of a simulation inside a simulation used to 
examine the results of multiple alternative scenarios (or 
developments) of the simulation. One possible use of 
this method is decision support in a simulation. Nested 
simulations run for a limited time, and after they are 
completed, their results are evaluated. Subsequently, the 
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nested simulations are merged back into a single 
instance and the main simulation can continue in 
a selected manner. The flow chart of a simulation using 
decision support with the use of nested simulations is 
shown in figure 1. 
 

Figure 1: Using nested simulations as simulation 
decision support technique 
 
Another use of nested simulations can be implemented 
as a multi-trajectory simulation - the simulation 
experiment is divided into nested simulations at 
individual points of decision and the simulation is 
gradually branched more and more and various 
scenarios are explored. According to the article (Gilmer 
and Sullivan 1999), this process can be more effective 
than using a large number of replications of a single 
simulation scenario. The flow chart of a simulation 
using a multi-trajectory simulation is shown in figure 2. 
In addition, attention will be paid to the first method of 
use – as a decision support in simulation. 
 

 
Figure 2: Using nested simulations to implement multi-
trajectory simulation 
 
3. NESTED SIMULATION TECHNIQUE 
Decision support in the simulator can use the standard 
simulation engine for both the main simulation and 
nested simulations.  
The method of using nested simulations as a support for 
decision making is not trivial and its detailed 
description can be found in the article (Diviš and 
Kavička 2016). The basic principle consists in pausing 
the execution of the main simulation at the occurrence 
of conflict (decision point of simulation). Subsequently, 
possible variants of the solution are identified, nested 
replications generated for each variant, and these 
replications run for a limited time (simulation 
lookahead). Upon completion, the simulation results are 
evaluated, and the main simulation continues with the 
selected solution. The strategy of using nested 
simulations is shown in figure 3. The whole technique 
of nested simulations is quite complicated, and for a 

better understanding of the procedures, several basic 
functions can be described: 
 

• simulation - realizes the progress of one 
particular simulated replication, 

• solveConflict - the function is called at the 
moment of the conflict emergence and decides 
how to solve it (using nested simulations or 
other methods), 

• solveUsingNestedSimulations - performs all 
necessary steps to create nested simulations, 
calculate them and collect results, 

• createReplications - creates specific 
replications for each possible variant of 
conflict solution. 

 
The following are the formalizations (using 
pseudocode) of the above functions. A certain degree of 
abstraction was chosen with regard to the appropriate 
demonstration of individual methods leading to a 
reduction in the computational complexity of the nested 
simulation method. 
 
function simulation(s): 
while s.isNotEnd(): 
 e := s.nextEvent() 
 s.processEvent(e) 
  
 if s.isConflictOccured(): 
  solution := solveConflict(s, s.getConflict()) 
  s.applySolution(solution) 
  
 s.saveState() 
 
function solveConflict(s, c): 
if simulation.recursionLevel <= REC_LIMIT: 
 return solveUsingNestedSimulations(s, c) 
else: 
 return solveUsingAlternativeMethod(s, c) 
 
function solveUsingNestedSimulations(s, c): 
variants := generateSolutionVariants(s, c) 
seeds := generateRandomSeeds(s, REPL_COUNT) 
nestedSimulations := createReplications(variants, seeds) 
 
parallel start all nestedSimulations 
wait until all finished nestedSimulations 
  
solution := analyseResults(nestedSimulations) 
return solution 
 
function createReplications(variants, seeds): 
simulations = {} 
for variant in variants: 
 for seed in seeds: 
  s := createSimulation(baseSimulation, variant,  
   seed) 
  append s to simulations[variant]  
 
return simulations 
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Figure 3: Illustration of occurrence and process of solving one conflict situation in one simulation replication 

 
3.1. Basic parameters of the nested simulations 
Before performing the nested simulations, we need to 
set the parameter group. This set of parameters may 
vary according to the type of conflict situations to be 
addressed. Depending on the implementation of 
decision support using nested simulations, the set of 
parameters may vary, or some parameters may be 
implemented differently. 
 
Basic parameter overview: 
 

• ScnCount – limit the number of evaluated 
scenarios (variants), 

• ScnGen – generator of possible scenarios for 
solving conflict situation, 

• StopCond – condition for terminating 
execution of nested simulations (can be 
interpreted as a constant value – length of 
lookahead), 

• CrOpt, CrOptComparer – the functions used 
to evaluate individual nested simulation 
results. 

 
Parameters related to multiple replications: 
 

• ReplCount – number of evaluated multiple 
replications for each scenario (variant), 

• ReplResultsAggregateFunction – function for 
evaluating results between replications of one 
scenario. 

 
Parameters related to recursive nested simulations: 
 

• RecLimit – maximum depth of recursion of 
nested simulation calculations, 

• RecStopCondBehaviour – determines the use 
of StopCond in recursive simulations 
(extension of lookahead, limitation of 
lookahead to the original value, ...), 

• RecOnLimitAction – defines the method 
(process) for resolving the conflict arising at 
the maximum recursion depth (no more 
recursive (nested) simulations are allowed). 

 
More detailed description of individual parameters can 
be found in the article (Diviš and Kavička 2018). 
 
4. EXACT OPTIMIZATION METHOD OF 

RECURSIVE CALCULATIONS 
A series of simulations are needed to achieve relevant 
results in the simulation study. Individual simulations 
differ in the seeds used for pseudorandom number 
generators and thus affect the run of simulations. 
During the past investigation of nested simulation 
behaviour, it was found that the maximum nesting level 
dominates the quality of the result. A higher nesting 
level allows for better results. The negative 
consequence of allowing a high nesting level is a 
significant increase in the processing complexity of the 
method. If there is no initial estimate, it is not advisable 
to run simulations with a higher nesting level. There 
might also be a situation where the configuration is not 
computable with the available computing resources (too 
high computational time and/or memory requirements). 
An iterative approach to a simulation study can start 
from the simplest of configurations and continue with 
more complicated configurations. If recursion is not 
allowed in the decision-making process at the 
beginning, the simulations can be completed very 
quickly. In the next iteration step, one level of recursion 
would be allowed and computational complexity would 
increase as expected. This procedure offers a safe way 
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to get results for all the necessary simulations, even if 
the available time to perform the study expires at the 
arbitrary nesting level. The disadvantage of the method 
is a considerable amount of repetition of previously 
performed simulations. 
As part of our investigation (a case study on rail traffic 
simulation), it turns out that results do not change 
significantly between nesting levels. More levels of 
nesting rather refine decision-making results. It is not 
yet possible to generalize this behaviour due to the 
absence of multiple case studies. But for an application 
class where nested simulations exhibit the above 
behaviour, it is possible to continually save the progress 
of the calculation to an external memory (hard disk). 
Then these simulations are used to speed up calculations 
of new simulations with a higher nesting level. A more 
detailed level of simulations will use the capability to 
skip over already calculated sets of states. These jumps 
in (simulation) time can be used if a conflict is found 
whose new solution is identical to the solution from the 
previous set of simulations. This procedure can be 
repeated for each partial conflict as long as the 
simulation progress is the same, and there is no 
difference between the calculated solutions of the 
simulation. Each simulation branch (main simulation 
and individual nested simulations) represents an 
independent process to which this procedure can be 
applied. 
For a better understanding of the method and the solved 
situations, the whole simulation strategy is illustrated in 
the following figures. Figure 4 (case A) shows the basic 
run of a stochastic simulation where a conflict situation 
occurred. The depicted situation does not allow nested 
simulations to be used, and thus conflict is resolved 
using an alternative method (e.g. priority planning). The 
selected variant of the solution is represented by a blue 
text label. 
 

 
Figure 4: Conflict solved using priority planning (A) 

 
Figure 5 (case B) shows the same simulation with one 
level of nested simulations allowed. The decision 
process of nested simulations is shown here as purple 
rectangles and the solution found is shown in a text 
label. 
 

 
Figure 5: Conflict solved using nested simulations (B) 

 
Figure 6 (case C) extends the previous representation to 
indicate solution variants that are evaluated by nested 
simulation. In this illustration, however, the details of 

the progress of the individual replications of nested 
simulation variants are omitted. 
Figure. 6 (case D) adds a detailed view of each 
replication in nested simulations. In this representation, 
the progress of all nested replications is conflict-free 
and there is no subsequent nested conflict. 
Figure 6 (case E) alternates the previous simulation and 
expands it with possible conflict situations within 
nested replications. Nested simulations are not allowed 
to be used as a solution for nested conflicts, but apply 
the priority planning method. This representation 
contains all the simulation details that were triggered 
with the maximum nesting level of 1. 
Figure 6 (case F) is based on simulation case E and 
increases the maximum nesting level to 2. The original 
nested conflicts are not resolved by priority planning, 
but by nested simulations. 
Figure 6 (case G) completes a detailed view of solving 
one selected nested conflict. Furthermore, the states and 
parts of the simulation are highlighted in green, orange, 
or red. The green colour is used for states that can be 
skipped (known states from the previous level of 
simulation; skip is possible to the last state in the green 
field). These states were already evaluated using a 
lower nesting level and they are identical to states in the 
new simulation (with higher nesting level). Orange 
states are new and related to a higher nesting level. 
These states need to be newly calculated; data is not 
available. The red-highlighted states represent changes 
from the previous simulation. The changes occurred due 
to the selection of a different solution (variant) to a 
conflict. These states need to be recalculated, and the 
corresponding data from the previous simulation cannot 
be used. 
The example shows several possible situations that may 
occur during the simulation. If the new nesting level 
provides the same solution as the previous level of 
simulations - it is possible to effectively skip the 
following simulation states until the next conflict. 
Conflicts that have resulted in an alternative solution (as 
opposed to the previous one) will cause a different state 
to be created, and therefore the subsequent simulation 
states needs to be "calculated again". There is also a 
situation where alternative solutions have occurred 
within the conflict, but the original (external) solution is 
the same as in the previous simulation. Therefore, it is 
not true that the first change in the simulation would 
prevent further use of data from the previous level of 
simulation.
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Figure 6: Exact optimization algorithm progress 
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4.1. Algorithm 
To implement the above procedure, it is necessary to 
change the original simulation function. It will now 
detect possible skips of the already solved states. 
 
function simulation(s): 
ps := loadPreviousSimulationStates(s) 
while s.isNotEnd(): 
 if ps.isStateCompatible(s): 
  state := ps.getStateForNextConflict() 
  jumpToState(s, state) 
 else: 
  e := s.nextEvent() 
  s.processEvent(e) 
  
 if s.isConflictOccured(): 
  solution := solveConflict(s, s.getConflict()) 
  s.applySolution(solution) 
  
 s.saveState() 
 

4.2. Criteria for evaluating results 
In order to determine whether this procedure is 
worthwhile, it is necessary to record the details of the 
nested simulation calculation progress - the consumed 
machine time and information about the individual 
decisions made in nested simulations. 
 
4.2.1. Assessment of the decision-making process 
As a first criterion for evaluating this process, it is 
possible to express the percentage of conflict situations 
that can be accelerated by this process. That is, to 
identify the last identical conflict state and to express 
the value of the ratio of identical conflicts between two 
calculations of nested simulations. 
This criterion is very easy to calculate, but it does not 
provide a relevant metric for evaluating the actual 
impact on the required machine time for calculations. 
 
4.2.2. Assesment of time savings 
The time-saving criterion is based on the logic of the 
previous criterion. The criterion is not expressed by the 
relative number of conflicting states, but by the machine  
time needed to calculate simulation. Its value 
corresponds to the actual machine time that can be 
saved by remembering the previous level of 
simulations. 
 
4.2.3. Assesment of memory requirements 
Nested simulations represent a complex computational 
task whose computational demands grow exponentially 
(due to specific parameters). In order to make the 
simulation faster, it is necessary to remember the state 
of simulation in all conflicting states in all simulations 
(not only in the main simulation but also in all nested 
simulations). The criterion expresses the memory 
demand for one simulation, respectively the expected 
memory demands of all simulations. To effectively 
implement this method, it is necessary to have an 
external memory (with fast access) with the expected 

capacity (ideally operating memory, SSD, fast RAID 
array). 
 
5. HEURISTIC METHOD FOR MERGING  

IDENTICAL REPLICATIONS 
The createReplications algorithm method outlines how 
to create nested replications for each variant. For each 
variant, there are ReplCount simulations that differ by 
the default random number generator seed. 
Heuristic for merging identical replications is based on 
the capability of prediction that the progress of two 
selected nested replications will be identical. If the 
match of two replications can be evaluated in advance, 
it may be decided to calculate only one replication. 
Depending on the particular method of using this 
heuristic, it is possible to obtain a result whose quality 
is the same as the original procedure of nested 
simulations. This is possible when heuristics are used 
only at a particular level of nested simulations where no 
further recursion is allowed. 
By using a heuristic at all nesting levels, the accuracy of 
the results can be reduced, and so decision-making 
process results in suboptimal solutions. In a situation 
where a conflicting state occurs in a nested simulation 
and at least one more level of recursion is allowed, 
using a heuristic may result in a suboptimal solution. 
Without a heuristic, each replication calculates the 
nested conflict using a new set of simulations (with 
different seeds of pseudo-random number generators). 
The use of a heuristic, limits the nested conflict solution 
to only one nested calculation and does not examine the 
complete original set of states. 
Figure 7 shows an example of using that heuristic 
method. Here, the heuristic can be used to merge 2 
replications for variant A1 and 2 replications for variant 
B1. 
 

 
Figure 7: Example of possible replications merge 
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You can apply this method by modifying the original 
createReplications function: 
 
function createReplications(variants, seeds): 
simulations = {} 
for variant in variants: 
 for seed in seeds: 
  s := createSimulation(baseSimulation, variant,  
   seed) 
  if (ss := existSimilarSimulation(s,  
       simulations[variant]): 
   increment weight simulations[variant][ss] 
   delete s 
  else: 
   append s to simulations[variant]  
 
return simulations 
 
In a case study - a train station simulator - it is possible 
to detect the replication match in a relatively simple 
way. The nested simulation lookahead (run time) is 
defined by a constant. Two replications will be the same 
if the random events during the lookahead are the same. 
In this case, there is only one stochastic event "train 
arrival to simulation". It is enough to compare 
scheduled train arrivals between both replications to 
evaluate the match. 
 
6. HEURISTIC METHOD FOR SOLVING 

SUBSEQUENT CONFLICTS 
Typically, conflicts that occur during nested simulations 
(i.e. not in the main simulation), later may emerge in the 
main simulation (in general in a higher hierarchical 
level of simulation). This frequently leads to multiple 
calculations of the same conflict situations (see figure 
8). A heuristic allows using results of these conflicts to 
immediately resolve future (identical) conflicts. 
 

 
Figure 8: Example of subsequent conflicts 

 
The heuristic can be applied by modifying the original 
solveConflict function: 
 
function solveConflict(s, c): 
if hasSatisfactoryPreviousSolution(s, c): 
 return solveUsingPreviousSolution(s, c) 
 
if simulation.recursionLevel <= REC_LIMIT: 
 solution := solveUsingNestedSimulations(s, c) 
 saveSolutionDetails(solution, s, c) 
 return solution 
else: 
 return solveUsingAlternativeMethod(s, c) 
 

The application of the heuristic is determined by a 
parameter which defines whether the previous result 
was calculated in sufficient quality and consequently it 
can be applied. As an example to select a criterion, the 
number of recursive levels of nested simulations can be 
specified. The previous conflict solution will be 
considered acceptable if the conflict has been solved 
with at least one nesting level. Thus, if the nested 
conflicts were allowed to be solved by nested 
simulations when dealing with a conflict, then previous 
conflict solution is usable. If nested conflicts were dealt 
with only by an alternative approach (priority planning), 
the new conflict would be solved in a standard way, and 
heuristics would not be applied. 
 
7. TEST SCENARIO 
For the purpose of conducting the initial case study 
(Diviš and Kavička 2017), the infrastructure of 
a smaller scale prototype railway station with several 
adjacent track sections (ending with simplified railway 
station models) was created. In particular, the operation 
of passenger services and a smaller range of freight 
transport are expected to take place at the station. In the 
case study, the behaviour of the station was tested at the 
arrival of delayed trains. For each train, alternative train 
paths were defined that use alternate station tracks.  
 

 
Figure 9: Schematic representation of central station 
and adjacent tracks 

 
The representation of the main (central) station and the 
adjacent lines is shown in figure 9. There are two 
double-track lines (to the stations West and East) and 
one single-track line (to the station North) leading from 
the central station. The total distance between the 
eastern and western stations is about 20 km. The 
infrastructure is not completely fictional; it is inspired 
by several railway tracks and stations in the Czech 
Republic. The track profile contains sections with 
significant slope and arc ratios. 
The simulation study focuses on the station traffic in 
a two-hour peak period. Passenger and freight trains are 
included, with the emphasis placed on passenger 
transport. Passenger transport is divided into two 
groups: (a) long distance transport - express trains; 
(b) regional transport - passenger trains. The traffic 
overview is shown in table 1. Figure 10 shows the 
occupation of station tracks in the central station under 
the conditions of deterministic simulation. 
In the case study nested simulations are used as decision 
support. Its task is to select a replacement track for 
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Table 1: Parameterization of trains in the simulation model 

Train 
type 

Locomotive 
/ vagons Course 

Interval 
between 

trains 
[h:mm:ss] 

Total 
train 
count 

Delay 
prob. 

Delay mean 
time 

(exponential 
distribution) [s] 

Express 1 / 7 West → Central → East 30:00 5 50 % 420 
Express 1 / 7 East → Central → West 30:00 5 50 % 420 

Passenger 2 / 4 West → Central → East 10:00 12 33 % 270 
Passenger 2 / 4 East → Central → West 10:00 12 33 % 270 
Passenger 1 / 2 West → Central → North 30:00 4 33 % 270 
Passenger 1 / 2 North → Central → West 30:00 4 33 % 270 

Cargo 1 / 22 West → East 1:00:00 2 50 % 1800 
Cargo 1 / 22 East → West 1:00:00 2 50 % 1800 

 

 
Figure 10: Occupation of station tracks during deterministic simulation 

 
Delayed train, for which originally planned track is 
occupied. 
In the case study, various parameterizations of nested 
simulations were tested and obtained results were 
compared. Basic parameterization of nested 
simulations: 

• CrOpt – average weighted increment of train 
delays 

o weight is defined by a type (priority) 
of the train, 

o delay increment – the value is defined 
as the nonnegative portion of the train 
delay difference when leaving the 
simulation model minus train's input 
delay 

• CrOptComparer – minimum function, 
• ScnCount – without restriction, 
• ScnGen – according to the available train 

paths, 
• ReplPreserveOriginal – yes, 
• ReplResultsAggregateFunction – average 

function, 
• RecStopCondBehaviour – extension of the 

simulation time, 
• RecOnLimitAction – usage of priority planning 

for conflict resolution, 
• FallbackScenarioConflictLimiter – 15 s. 

 
Varied parameters according to configuration: 
 

• StopCond – 5, 15, 30 minutes, 

• ReplCount – 3, 5 replications 
• RecLimit – 0, 1, 2 levels of recursion. 

 
For each test configuration was calculated 100 
replications of main simulation. 
 
8. SIMULATION RESULTS 
Methods were evaluated based on detailed log files 
from full simulation runs. All methods were evaluated 
independently, one heuristic method at a time. Complex 
interactions between methods were not considered and 
evaluated. 
Results are presented in ratio of simulations that are 
needed to process with heuristics with comparison to   
simulation without heuristics. Thus, results with lower 
values are better. 
 
8.1. Exact optimization method 
Because exact optimization algorithm is based on fact 
that you can skip parts of simulations from previous 
level of recursion, we evaluated effects on level 2 of 
recursion with information from level 1. From previous 
simulations, we found out that there is biggest increase 
in computational difficulty on level 2.  
Unfortunately, exact optimization algorithm was 
evaluated as the worst method. Due to exponential 
growth of nested simulations, this method is able to 
save only up to 2 % of all necessary simulations. 
Method is also highly computationally expensive and 
requires nontrivial amount of memory. From these first 
trials this method couldn’t be recommended to use. 
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Results are shown in picture 11. Detail of an analysis of 
a single replication is shown on picture 12. 
 

 
Figure 11: Results of exact optimization algorithm 

 

 
Figure 12: Detail of an analysis of a single replication –
lookahead 15 mins, 3 replications, rep. no 38 – 
visualization shows state chart of the specific 
replication, blue circle represents starting state of a 
simulation, simulation of green states used exact 
algorithm optimization, red states must be recalculated 
due to state change in simulation 
 
8.2. Heuristics - merging identical replications 
Heuristics based on merging of identical replications 
appears to be very effective. With 5 minute lookahead it 
eliminated up to 60 % of all simulations, worst result of 
this method saved 25 % of simulations. With longer 
lookaheads effectivity of method decreased. With 
30 minutes of lookahead it was able to eliminate up to 
20 % of simulations.  
Method was used and evaluated with 2 different 
approaches - (a) merging can be performed at all levels 
of recursion, (b) merging of replications can be 
performed only at leaf level of recursion. Method (b) 
should not negatively affect quality of results. Results 
are shown on picture 13 (method (b) is marked with 'L'). 
 

 

Figure 13: Results of merge identical replications 
heuristics with different levels of recursion allowed 

 
8.3. Heuristics – solving subsequent conflicts 
Heuristics based on solving of subsequent conflicts also 
appears to be highly effective. It constantly is able to 
eliminate about 40 % of simulations. Unfortunately, this 
heuristics method will result in suboptimal solutions. In 
evaluated scenario it appears that subsequent conflicts 
result to different solution in 20 % of times. Results of 
the method and ratio of matched solutions in subsequent 
conflicts is shown in picture 14. 
 

 
Figure 14: Results of solve subsequent conflicts 
heuristics with different levels of recursion allowed (bar 
charts shows actual results, circles show ratio of 
matched solution) 
 
8.4. Comparison of methods 
Results of rough comparison of all proposed methods 
are presented in picture 15. Numeric results of average 
value of necessary simulations are presented in table 2. 
 

 
Figure 15: Comparison of all proposed methods 
 

Table 2: Average number of simulations needed to 
process simulations with usage of specific method 

Look-
ahead 

Repli-
cations 

Exact 
opt. alg. 

Merge 
identical 

Solve 
subsequent 

5 3 98.1% 65.8% 64.2% 
5 99.3% 53.5% 63.0% 

15 3 99.2% 86.0% 60.6% 
5 99.5% 75.7% 59.7% 

30 3 99.6% 89.9% 61.1% 
5 99.8% 84.1% 60.7% 
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9. CONCLUSION 
Results shown big differences between proposed 
methods. The exact optimization algorithm appears to 
be highly ineffective due to exponential growth of new 
simulations needed to process in new level of recursion. 
High complexity of the algorithm, overhead, low 
effectivity and memory demands rule out this method 
from real world usage. 
Other two heuristics methods appear to be quite usable 
and results in saving up to 40 % of necessary 
simulations. Unfortunately, quality of results may 
decrease due to application of these methods. There are 
few possibilities how to apply these methods to 
maintain same quality of results. But extended study of 
interactions between these methods and how results will 
be affected, remains as a task to further studies. 
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