
COMPUTATIONAL OPTIMIZATIONS OF NESTED SIMULATIONS UTILIZED FOR
DECISION-MAKING SUPPORT

Roman Diviš(a), Antonín Kavička(b)

(a),(b)University of Pardubice, Faculty of Electrical Engineering and Informatics

(a)roman.divis@upce.cz, (b)antonin.kavicka@upce.cz

ABSTRACT
Nested simulations present a general method suitable
for use in realizing a multi-trajectory simulation or as
a decision support in a simulator. The principle of
nested simulation (as a decision support) is to find a
solution to a problem using other time-limited
simulations which verify alternative options. After the
nested simulations have finished, the solutions of
individual alternatives are assessed and the best solution
is applied to the main simulation.
The aim of this article is to test various exact and
heuristic approaches to reduce the computational
complexity of nested multi-simulations. The basic
method uses the recorded states from previous
simulations to avoid duplicate calculations leading to
the same states. Other measures are heuristic and are
based on the detection of similar states/replications
during the calculation.

Keywords: nested simulations, decision support, rail
transport

1. INTRODUCTION
The stochastic simulator requires implementation of
some of the decision support techniques. There are
a number of ways to solve conflicting situations - from
leaving the solution to the user (interactive mode of
simulation) through various complex mathematical
models (fuzzy logic, artificial neural networks, ...).
Even though there are a number of complex decision
support techniques, in practice, one of the easiest
methods - priority planning - is often implemented in
microscopic railway simulators. This method is used in
OpenTrack, Villon and other rail simulators.
Nested or recursive simulations represent another
methodology that can be used to support decision
making in simulators. The principle of the method
consists in suspending the actual main simulation at the
moment when the conflict situation occurs and the
simulation is then cloned into several variants.
Individual clones have modified parameterization to
allow testing of different options for resolving the
conflict situation. These nested/recursive simulations
(basically different outlooks for the future within
a limited time horizon) are triggered, and after a certain
period of time, it is evaluated which one has the best
results. The optimal one is then used as a solution and

the main simulation continues only with the chosen
variant. Nested simulations are implemented and tested
as experimental decision support in the developed
MesoRail simulation tool (Diviš and Kavička 2015).
The aim of this paper is to describe possible exact and
heuristic algorithms designed to optimize nested
simulation calculations. The aim of each method is to
reduce the machine time required for simulation
experiments. The proposed methods use different
techniques based mainly on recording reached states
during simulations to speed up future calculations.

1.1. Brief overview of the state-of-the-art
It has to be declared that not many authors pay attention
to the research of nested/recursive simulations.
The authors Gilmer and Sullivan were focused in
several of their articles on the efficiency of higher
number of replications in contrast with multi-trajectory
simulation (Gilmer and Sullivan 1999). Their main
interest is related to the military simulator Eaglet, which
simulates the movement of military units of two armies
and their mutual interactions.
Eugen Kindler (as a pioneer of nested simulation in
Europe) published many articles with the focus on both,
the theoretical description of nested simulations
(classification, terminology, etc.) and their applications
in practice (Kindler 2010).
The issue of a planning support system is discussed by
Hill, Surdu, Ragsdale, and Schafer (2000). Those
authors were engaged in military planning.
Another area of applied nested simulations is connected
with scalable simulation models, which allow applying
both a macroscopic and a microscopic level of
investigation within the frame of one simulator (Bonté,
Duboz, Quesnel and Muller 2009). Another area of
exploiting nested simulations is financial a risk
management – e.g. Gordy and June (2010).

2. POSSIBLE APPROACHES TO THE USE OF

NESTED SIMULATIONS
The method of nested/recursive simulations presents
a principle of a simulation inside a simulation used to
examine the results of multiple alternative scenarios (or
developments) of the simulation. One possible use of
this method is decision support in a simulation. Nested
simulations run for a limited time, and after they are
completed, their results are evaluated. Subsequently, the

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

80

DOI: https://doi.org/10.46354/i3m.2019.emss.014

mailto:roman.divis@upce.cz

nested simulations are merged back into a single
instance and the main simulation can continue in
a selected manner. The flow chart of a simulation using
decision support with the use of nested simulations is
shown in figure 1.

Figure 1: Using nested simulations as simulation
decision support technique

Another use of nested simulations can be implemented
as a multi-trajectory simulation - the simulation
experiment is divided into nested simulations at
individual points of decision and the simulation is
gradually branched more and more and various
scenarios are explored. According to the article (Gilmer
and Sullivan 1999), this process can be more effective
than using a large number of replications of a single
simulation scenario. The flow chart of a simulation
using a multi-trajectory simulation is shown in figure 2.
In addition, attention will be paid to the first method of
use – as a decision support in simulation.

Figure 2: Using nested simulations to implement multi-
trajectory simulation

3. NESTED SIMULATION TECHNIQUE
Decision support in the simulator can use the standard
simulation engine for both the main simulation and
nested simulations.
The method of using nested simulations as a support for
decision making is not trivial and its detailed
description can be found in the article (Diviš and
Kavička 2016). The basic principle consists in pausing
the execution of the main simulation at the occurrence
of conflict (decision point of simulation). Subsequently,
possible variants of the solution are identified, nested
replications generated for each variant, and these
replications run for a limited time (simulation
lookahead). Upon completion, the simulation results are
evaluated, and the main simulation continues with the
selected solution. The strategy of using nested
simulations is shown in figure 3. The whole technique
of nested simulations is quite complicated, and for a

better understanding of the procedures, several basic
functions can be described:

• simulation - realizes the progress of one
particular simulated replication,

• solveConflict - the function is called at the
moment of the conflict emergence and decides
how to solve it (using nested simulations or
other methods),

• solveUsingNestedSimulations - performs all
necessary steps to create nested simulations,
calculate them and collect results,

• createReplications - creates specific
replications for each possible variant of
conflict solution.

The following are the formalizations (using
pseudocode) of the above functions. A certain degree of
abstraction was chosen with regard to the appropriate
demonstration of individual methods leading to a
reduction in the computational complexity of the nested
simulation method.

function simulation(s):
while s.isNotEnd():
 e := s.nextEvent()
 s.processEvent(e)

 if s.isConflictOccured():
 solution := solveConflict(s, s.getConflict())
 s.applySolution(solution)

 s.saveState()

function solveConflict(s, c):
if simulation.recursionLevel <= REC_LIMIT:
 return solveUsingNestedSimulations(s, c)
else:
 return solveUsingAlternativeMethod(s, c)

function solveUsingNestedSimulations(s, c):
variants := generateSolutionVariants(s, c)
seeds := generateRandomSeeds(s, REPL_COUNT)
nestedSimulations := createReplications(variants, seeds)

parallel start all nestedSimulations
wait until all finished nestedSimulations

solution := analyseResults(nestedSimulations)
return solution

function createReplications(variants, seeds):
simulations = {}
for variant in variants:
 for seed in seeds:
 s := createSimulation(baseSimulation, variant,
 seed)
 append s to simulations[variant]

return simulations

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

81

Figure 3: Illustration of occurrence and process of solving one conflict situation in one simulation replication

3.1. Basic parameters of the nested simulations
Before performing the nested simulations, we need to
set the parameter group. This set of parameters may
vary according to the type of conflict situations to be
addressed. Depending on the implementation of
decision support using nested simulations, the set of
parameters may vary, or some parameters may be
implemented differently.

Basic parameter overview:

• ScnCount – limit the number of evaluated
scenarios (variants),

• ScnGen – generator of possible scenarios for
solving conflict situation,

• StopCond – condition for terminating
execution of nested simulations (can be
interpreted as a constant value – length of
lookahead),

• CrOpt, CrOptComparer – the functions used
to evaluate individual nested simulation
results.

Parameters related to multiple replications:

• ReplCount – number of evaluated multiple
replications for each scenario (variant),

• ReplResultsAggregateFunction – function for
evaluating results between replications of one
scenario.

Parameters related to recursive nested simulations:

• RecLimit – maximum depth of recursion of
nested simulation calculations,

• RecStopCondBehaviour – determines the use
of StopCond in recursive simulations
(extension of lookahead, limitation of
lookahead to the original value, ...),

• RecOnLimitAction – defines the method
(process) for resolving the conflict arising at
the maximum recursion depth (no more
recursive (nested) simulations are allowed).

More detailed description of individual parameters can
be found in the article (Diviš and Kavička 2018).

4. EXACT OPTIMIZATION METHOD OF

RECURSIVE CALCULATIONS
A series of simulations are needed to achieve relevant
results in the simulation study. Individual simulations
differ in the seeds used for pseudorandom number
generators and thus affect the run of simulations.
During the past investigation of nested simulation
behaviour, it was found that the maximum nesting level
dominates the quality of the result. A higher nesting
level allows for better results. The negative
consequence of allowing a high nesting level is a
significant increase in the processing complexity of the
method. If there is no initial estimate, it is not advisable
to run simulations with a higher nesting level. There
might also be a situation where the configuration is not
computable with the available computing resources (too
high computational time and/or memory requirements).
An iterative approach to a simulation study can start
from the simplest of configurations and continue with
more complicated configurations. If recursion is not
allowed in the decision-making process at the
beginning, the simulations can be completed very
quickly. In the next iteration step, one level of recursion
would be allowed and computational complexity would
increase as expected. This procedure offers a safe way

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

82

to get results for all the necessary simulations, even if
the available time to perform the study expires at the
arbitrary nesting level. The disadvantage of the method
is a considerable amount of repetition of previously
performed simulations.
As part of our investigation (a case study on rail traffic
simulation), it turns out that results do not change
significantly between nesting levels. More levels of
nesting rather refine decision-making results. It is not
yet possible to generalize this behaviour due to the
absence of multiple case studies. But for an application
class where nested simulations exhibit the above
behaviour, it is possible to continually save the progress
of the calculation to an external memory (hard disk).
Then these simulations are used to speed up calculations
of new simulations with a higher nesting level. A more
detailed level of simulations will use the capability to
skip over already calculated sets of states. These jumps
in (simulation) time can be used if a conflict is found
whose new solution is identical to the solution from the
previous set of simulations. This procedure can be
repeated for each partial conflict as long as the
simulation progress is the same, and there is no
difference between the calculated solutions of the
simulation. Each simulation branch (main simulation
and individual nested simulations) represents an
independent process to which this procedure can be
applied.
For a better understanding of the method and the solved
situations, the whole simulation strategy is illustrated in
the following figures. Figure 4 (case A) shows the basic
run of a stochastic simulation where a conflict situation
occurred. The depicted situation does not allow nested
simulations to be used, and thus conflict is resolved
using an alternative method (e.g. priority planning). The
selected variant of the solution is represented by a blue
text label.

Figure 4: Conflict solved using priority planning (A)

Figure 5 (case B) shows the same simulation with one
level of nested simulations allowed. The decision
process of nested simulations is shown here as purple
rectangles and the solution found is shown in a text
label.

Figure 5: Conflict solved using nested simulations (B)

Figure 6 (case C) extends the previous representation to
indicate solution variants that are evaluated by nested
simulation. In this illustration, however, the details of

the progress of the individual replications of nested
simulation variants are omitted.
Figure. 6 (case D) adds a detailed view of each
replication in nested simulations. In this representation,
the progress of all nested replications is conflict-free
and there is no subsequent nested conflict.
Figure 6 (case E) alternates the previous simulation and
expands it with possible conflict situations within
nested replications. Nested simulations are not allowed
to be used as a solution for nested conflicts, but apply
the priority planning method. This representation
contains all the simulation details that were triggered
with the maximum nesting level of 1.
Figure 6 (case F) is based on simulation case E and
increases the maximum nesting level to 2. The original
nested conflicts are not resolved by priority planning,
but by nested simulations.
Figure 6 (case G) completes a detailed view of solving
one selected nested conflict. Furthermore, the states and
parts of the simulation are highlighted in green, orange,
or red. The green colour is used for states that can be
skipped (known states from the previous level of
simulation; skip is possible to the last state in the green
field). These states were already evaluated using a
lower nesting level and they are identical to states in the
new simulation (with higher nesting level). Orange
states are new and related to a higher nesting level.
These states need to be newly calculated; data is not
available. The red-highlighted states represent changes
from the previous simulation. The changes occurred due
to the selection of a different solution (variant) to a
conflict. These states need to be recalculated, and the
corresponding data from the previous simulation cannot
be used.
The example shows several possible situations that may
occur during the simulation. If the new nesting level
provides the same solution as the previous level of
simulations - it is possible to effectively skip the
following simulation states until the next conflict.
Conflicts that have resulted in an alternative solution (as
opposed to the previous one) will cause a different state
to be created, and therefore the subsequent simulation
states needs to be "calculated again". There is also a
situation where alternative solutions have occurred
within the conflict, but the original (external) solution is
the same as in the previous simulation. Therefore, it is
not true that the first change in the simulation would
prevent further use of data from the previous level of
simulation.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

83

Figure 6: Exact optimization algorithm progress

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

84

4.1. Algorithm
To implement the above procedure, it is necessary to
change the original simulation function. It will now
detect possible skips of the already solved states.

function simulation(s):
ps := loadPreviousSimulationStates(s)
while s.isNotEnd():
 if ps.isStateCompatible(s):
 state := ps.getStateForNextConflict()
 jumpToState(s, state)
 else:
 e := s.nextEvent()
 s.processEvent(e)

 if s.isConflictOccured():
 solution := solveConflict(s, s.getConflict())
 s.applySolution(solution)

 s.saveState()

4.2. Criteria for evaluating results
In order to determine whether this procedure is
worthwhile, it is necessary to record the details of the
nested simulation calculation progress - the consumed
machine time and information about the individual
decisions made in nested simulations.

4.2.1. Assessment of the decision-making process
As a first criterion for evaluating this process, it is
possible to express the percentage of conflict situations
that can be accelerated by this process. That is, to
identify the last identical conflict state and to express
the value of the ratio of identical conflicts between two
calculations of nested simulations.
This criterion is very easy to calculate, but it does not
provide a relevant metric for evaluating the actual
impact on the required machine time for calculations.

4.2.2. Assesment of time savings
The time-saving criterion is based on the logic of the
previous criterion. The criterion is not expressed by the
relative number of conflicting states, but by the machine
time needed to calculate simulation. Its value
corresponds to the actual machine time that can be
saved by remembering the previous level of
simulations.

4.2.3. Assesment of memory requirements
Nested simulations represent a complex computational
task whose computational demands grow exponentially
(due to specific parameters). In order to make the
simulation faster, it is necessary to remember the state
of simulation in all conflicting states in all simulations
(not only in the main simulation but also in all nested
simulations). The criterion expresses the memory
demand for one simulation, respectively the expected
memory demands of all simulations. To effectively
implement this method, it is necessary to have an
external memory (with fast access) with the expected

capacity (ideally operating memory, SSD, fast RAID
array).

5. HEURISTIC METHOD FOR MERGING

IDENTICAL REPLICATIONS
The createReplications algorithm method outlines how
to create nested replications for each variant. For each
variant, there are ReplCount simulations that differ by
the default random number generator seed.
Heuristic for merging identical replications is based on
the capability of prediction that the progress of two
selected nested replications will be identical. If the
match of two replications can be evaluated in advance,
it may be decided to calculate only one replication.
Depending on the particular method of using this
heuristic, it is possible to obtain a result whose quality
is the same as the original procedure of nested
simulations. This is possible when heuristics are used
only at a particular level of nested simulations where no
further recursion is allowed.
By using a heuristic at all nesting levels, the accuracy of
the results can be reduced, and so decision-making
process results in suboptimal solutions. In a situation
where a conflicting state occurs in a nested simulation
and at least one more level of recursion is allowed,
using a heuristic may result in a suboptimal solution.
Without a heuristic, each replication calculates the
nested conflict using a new set of simulations (with
different seeds of pseudo-random number generators).
The use of a heuristic, limits the nested conflict solution
to only one nested calculation and does not examine the
complete original set of states.
Figure 7 shows an example of using that heuristic
method. Here, the heuristic can be used to merge 2
replications for variant A1 and 2 replications for variant
B1.

Figure 7: Example of possible replications merge

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

85

You can apply this method by modifying the original
createReplications function:

function createReplications(variants, seeds):
simulations = {}
for variant in variants:
 for seed in seeds:
 s := createSimulation(baseSimulation, variant,
 seed)
 if (ss := existSimilarSimulation(s,
 simulations[variant]):
 increment weight simulations[variant][ss]
 delete s
 else:
 append s to simulations[variant]

return simulations

In a case study - a train station simulator - it is possible
to detect the replication match in a relatively simple
way. The nested simulation lookahead (run time) is
defined by a constant. Two replications will be the same
if the random events during the lookahead are the same.
In this case, there is only one stochastic event "train
arrival to simulation". It is enough to compare
scheduled train arrivals between both replications to
evaluate the match.

6. HEURISTIC METHOD FOR SOLVING

SUBSEQUENT CONFLICTS
Typically, conflicts that occur during nested simulations
(i.e. not in the main simulation), later may emerge in the
main simulation (in general in a higher hierarchical
level of simulation). This frequently leads to multiple
calculations of the same conflict situations (see figure
8). A heuristic allows using results of these conflicts to
immediately resolve future (identical) conflicts.

Figure 8: Example of subsequent conflicts

The heuristic can be applied by modifying the original
solveConflict function:

function solveConflict(s, c):
if hasSatisfactoryPreviousSolution(s, c):
 return solveUsingPreviousSolution(s, c)

if simulation.recursionLevel <= REC_LIMIT:
 solution := solveUsingNestedSimulations(s, c)
 saveSolutionDetails(solution, s, c)
 return solution
else:
 return solveUsingAlternativeMethod(s, c)

The application of the heuristic is determined by a
parameter which defines whether the previous result
was calculated in sufficient quality and consequently it
can be applied. As an example to select a criterion, the
number of recursive levels of nested simulations can be
specified. The previous conflict solution will be
considered acceptable if the conflict has been solved
with at least one nesting level. Thus, if the nested
conflicts were allowed to be solved by nested
simulations when dealing with a conflict, then previous
conflict solution is usable. If nested conflicts were dealt
with only by an alternative approach (priority planning),
the new conflict would be solved in a standard way, and
heuristics would not be applied.

7. TEST SCENARIO
For the purpose of conducting the initial case study
(Diviš and Kavička 2017), the infrastructure of
a smaller scale prototype railway station with several
adjacent track sections (ending with simplified railway
station models) was created. In particular, the operation
of passenger services and a smaller range of freight
transport are expected to take place at the station. In the
case study, the behaviour of the station was tested at the
arrival of delayed trains. For each train, alternative train
paths were defined that use alternate station tracks.

Figure 9: Schematic representation of central station
and adjacent tracks

The representation of the main (central) station and the
adjacent lines is shown in figure 9. There are two
double-track lines (to the stations West and East) and
one single-track line (to the station North) leading from
the central station. The total distance between the
eastern and western stations is about 20 km. The
infrastructure is not completely fictional; it is inspired
by several railway tracks and stations in the Czech
Republic. The track profile contains sections with
significant slope and arc ratios.
The simulation study focuses on the station traffic in
a two-hour peak period. Passenger and freight trains are
included, with the emphasis placed on passenger
transport. Passenger transport is divided into two
groups: (a) long distance transport - express trains;
(b) regional transport - passenger trains. The traffic
overview is shown in table 1. Figure 10 shows the
occupation of station tracks in the central station under
the conditions of deterministic simulation.
In the case study nested simulations are used as decision
support. Its task is to select a replacement track for

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

86

Table 1: Parameterization of trains in the simulation model

Train
type

Locomotive
/ vagons Course

Interval
between

trains
[h:mm:ss]

Total
train
count

Delay
prob.

Delay mean
time

(exponential
distribution) [s]

Express 1 / 7 West → Central → East 30:00 5 50 % 420
Express 1 / 7 East → Central → West 30:00 5 50 % 420

Passenger 2 / 4 West → Central → East 10:00 12 33 % 270
Passenger 2 / 4 East → Central → West 10:00 12 33 % 270
Passenger 1 / 2 West → Central → North 30:00 4 33 % 270
Passenger 1 / 2 North → Central → West 30:00 4 33 % 270

Cargo 1 / 22 West → East 1:00:00 2 50 % 1800
Cargo 1 / 22 East → West 1:00:00 2 50 % 1800

Figure 10: Occupation of station tracks during deterministic simulation

Delayed train, for which originally planned track is
occupied.
In the case study, various parameterizations of nested
simulations were tested and obtained results were
compared. Basic parameterization of nested
simulations:

• CrOpt – average weighted increment of train
delays

o weight is defined by a type (priority)
of the train,

o delay increment – the value is defined
as the nonnegative portion of the train
delay difference when leaving the
simulation model minus train's input
delay

• CrOptComparer – minimum function,
• ScnCount – without restriction,
• ScnGen – according to the available train

paths,
• ReplPreserveOriginal – yes,
• ReplResultsAggregateFunction – average

function,
• RecStopCondBehaviour – extension of the

simulation time,
• RecOnLimitAction – usage of priority planning

for conflict resolution,
• FallbackScenarioConflictLimiter – 15 s.

Varied parameters according to configuration:

• StopCond – 5, 15, 30 minutes,

• ReplCount – 3, 5 replications
• RecLimit – 0, 1, 2 levels of recursion.

For each test configuration was calculated 100
replications of main simulation.

8. SIMULATION RESULTS
Methods were evaluated based on detailed log files
from full simulation runs. All methods were evaluated
independently, one heuristic method at a time. Complex
interactions between methods were not considered and
evaluated.
Results are presented in ratio of simulations that are
needed to process with heuristics with comparison to
simulation without heuristics. Thus, results with lower
values are better.

8.1. Exact optimization method
Because exact optimization algorithm is based on fact
that you can skip parts of simulations from previous
level of recursion, we evaluated effects on level 2 of
recursion with information from level 1. From previous
simulations, we found out that there is biggest increase
in computational difficulty on level 2.
Unfortunately, exact optimization algorithm was
evaluated as the worst method. Due to exponential
growth of nested simulations, this method is able to
save only up to 2 % of all necessary simulations.
Method is also highly computationally expensive and
requires nontrivial amount of memory. From these first
trials this method couldn’t be recommended to use.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

87

Results are shown in picture 11. Detail of an analysis of
a single replication is shown on picture 12.

Figure 11: Results of exact optimization algorithm

Figure 12: Detail of an analysis of a single replication –
lookahead 15 mins, 3 replications, rep. no 38 –
visualization shows state chart of the specific
replication, blue circle represents starting state of a
simulation, simulation of green states used exact
algorithm optimization, red states must be recalculated
due to state change in simulation

8.2. Heuristics - merging identical replications
Heuristics based on merging of identical replications
appears to be very effective. With 5 minute lookahead it
eliminated up to 60 % of all simulations, worst result of
this method saved 25 % of simulations. With longer
lookaheads effectivity of method decreased. With
30 minutes of lookahead it was able to eliminate up to
20 % of simulations.
Method was used and evaluated with 2 different
approaches - (a) merging can be performed at all levels
of recursion, (b) merging of replications can be
performed only at leaf level of recursion. Method (b)
should not negatively affect quality of results. Results
are shown on picture 13 (method (b) is marked with 'L').

Figure 13: Results of merge identical replications
heuristics with different levels of recursion allowed

8.3. Heuristics – solving subsequent conflicts
Heuristics based on solving of subsequent conflicts also
appears to be highly effective. It constantly is able to
eliminate about 40 % of simulations. Unfortunately, this
heuristics method will result in suboptimal solutions. In
evaluated scenario it appears that subsequent conflicts
result to different solution in 20 % of times. Results of
the method and ratio of matched solutions in subsequent
conflicts is shown in picture 14.

Figure 14: Results of solve subsequent conflicts
heuristics with different levels of recursion allowed (bar
charts shows actual results, circles show ratio of
matched solution)

8.4. Comparison of methods
Results of rough comparison of all proposed methods
are presented in picture 15. Numeric results of average
value of necessary simulations are presented in table 2.

Figure 15: Comparison of all proposed methods

Table 2: Average number of simulations needed to
process simulations with usage of specific method

Look-
ahead

Repli-
cations

Exact
opt. alg.

Merge
identical

Solve
subsequent

5 3 98.1% 65.8% 64.2%
5 99.3% 53.5% 63.0%

15 3 99.2% 86.0% 60.6%
5 99.5% 75.7% 59.7%

30 3 99.6% 89.9% 61.1%
5 99.8% 84.1% 60.7%

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

88

9. CONCLUSION
Results shown big differences between proposed
methods. The exact optimization algorithm appears to
be highly ineffective due to exponential growth of new
simulations needed to process in new level of recursion.
High complexity of the algorithm, overhead, low
effectivity and memory demands rule out this method
from real world usage.
Other two heuristics methods appear to be quite usable
and results in saving up to 40 % of necessary
simulations. Unfortunately, quality of results may
decrease due to application of these methods. There are
few possibilities how to apply these methods to
maintain same quality of results. But extended study of
interactions between these methods and how results will
be affected, remains as a task to further studies.

ACKNOWLEDGMENTS
The work was supported from ERDF/ESF Cooperation
in Applied Research between the Univ. of Pardubice
and companies, in the Field of Positioning, Detection
and Simulation Technology for Transport Systems -
PosiTrans (CZ.02.1.01/0.0/0.0/17_049/0008394).

REFERENCES
Bonté B., Duboz R., Quesnel G., Muller J. P., 2009.

Recursive simulation and experimental frame for
multiscale simulation. In: Proceedings of the 2009
Summer Computer Simulation Conference, 164-
172. July 13-16, Istanbul, Turkey.

Diviš R., Kavička A, 2015. Design and development of
a mesoscopic simulator specialized in
investigating capacities of railway nodes.
Proceedings of the European Modeling and
Simulation Symposium, 52-57. September 21-23,
Bergeggi, Italy.

Diviš R., Kavička A, 2016. The method of nested
simulations supporting decision-making process
within a mesoscopic railway simulator.
Proceedings of the European Modeling and
Simulation Symposium, 100-106. September 26-
28, Larnaca, Cyprus.

Diviš R., Kavička A, 2018. Complex nested simulations
within simulators reflecting railway traffic.
Proceedings of the European Modeling and
Simulation Symposium, 178-186. September 17-
19, Budapest, Hungary.

Gilmer J. B., Sullivan F. J., 1999. Multitrajectory
simulation performance for varying scenario sizes

 [combat simulation]. In: WSC'99. 1999 Winter
Simulation Conference Proceedings. 'Simulation -
A Bridge to the Future' (Cat. No.99CH37038),
1137-1146. December 5-8, Phoenix, AZ, USA.

Gordy M. B., Juneja S., 2010. Nested Simulation in
Protfolio Risk Measurement. Management Science
56:1833-1848.

Hill J. M. D., Surdu J. R., Ragsdale D. J., Schafer J. H.,
2000. Anticipatory planning in information
operations. In: SMC 2000 Conference
Proceedings. 2000 IEEE International Conference
on Systems, Man and Cybernetics. 'Cybernetics
Evolving to Systems, Humans, Organizations, and
their Complex Interactions' (Cat. No.00CH37166),
2350-2355. October 8-11, Nashville, Tennessee,
USA.

Kindler E., 2010. Nested Models Implemented in
Nested Theories. In: Proceedings of the 12th
WSEAS International Conference on Automatic
Control, Modelling & Simulation, 150-159. May
29-31, Catania, Sicily, Italy.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

89

