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ABSTRACT 
As nearly every artificial intelligence application is 
based on a framework, using the best fitting one for the 
task is key in developing an efficient solution quickly. 
Since there are two main types of frameworks, based on 
low and high abstraction level approaches, these two 
types will get compared and evaluated throughout this 
paper using Tensorflow and Keras as representatives. 
Key features of artificial intelligence frameworks for 
industrial applications are performance, expandability, 
abstraction level and therefore ease of use for rapid 
prototyping. All those features are major factors to keep 
development time and costs as low as possible, while 
maximizing product quality. To evaluate both 
approaches by these criteria a neural network 
classifying handwritten digits is implemented. 
 
Keywords: tensorflow, keras, neural network, 
evaluation 

 
1. INTRODUCTION 
Since the middle of the 20th century scientists have been 
trying to implement forms of artificial intelligence on 
computer systems. As time went by, those systems have 
grown from small programs to enormous applications. 
For each new application of artificial intelligence (AI) a 
specific neural network was designed and implemented, 
specifically tailored to the needs of the application. This 
had to be done since there had not been enough 
computing power and memory available to develop 
more general solutions. 
Since implementing all basic functionalities each time 
from scratch is very time consuming and huge amounts 
of computing power became available year after year, 
artificial intelligence frameworks have been developed. 
These frameworks pack useful functionality and a basic 
environment into a reusable package, making 
development of bigger and better programs quicker and 
more convenient. Today nearly all AI applications are 
based on such software frameworks enabling high 
flexibility and performance all while keeping 
development time down to a minimum. Most of the 
time these generally very basic, reusable software 
packages are customizable to fit very specific and 
demanding tasks. 

Since artificial intelligence and neural networks are 
widely used in many commercial products and 
industrial applications, the number of frameworks being 
available keeps growing. Based on this fact it is not that 
easy to choose a fitting framework for a specific task or 
product. If the wrong software is used, many problems 
may arise. Those problems may range from slower 
development and consequently to a longer time to 
market, to a complete project failure caused by major 
performance hits. 
Some of these artificial intelligence frameworks stand 
out from the crowd because they are based on a very 
efficient concept or they are backed and continuously 
developed by concerns such as Google. 
The goal of this paper is to compare the two basic 
concepts of artificial intelligence frameworks: high- and 
low-level approaches. Frameworks using a high-level 
approach do not clutter function interfaces and 
application programming interfaces (API) with 
unneeded parameters and details. By using such an 
approach implementation is done based on more 
abstract functionality and system blocks, 
which makes development fast and easier to begin with. 
Low-level frameworks on the other hand tend to give a 
very detailed and powerful API, enabling the developers 
and engineers to tweak and optimize every little setting 
and element of every component of the complete 
system. This ability enforces great flexibility and 
efficient applications but comes with costs of longer 
development times and more needed know-how of all 
processes in detail. 
As representatives for high- and low-level approaches 
Tensorflow (Google Inc. 2019) and Keras (Keras Home 
2019) have been selected, since both are very widely 
spread in the research community and in industrial 
environments as well.  
Theano (Theano 2019) would have also been an 
available option as low-level framework. Based on the 
NumPy (NumPy 2019) library the software is able to 
translate all operations into efficient C programming 
language, enabling high performance. 
Another solid choice for a high abstraction level 
framework would have been Caffe (Berkeley AI 
Research 2019) due to efficient grafics processing units 
(GPU) usage and abstract modularization. 
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The fact that Keras, as high-level framework, is based 
on Tensorflow ensures the opportunity to compare both 
frameworks against each other and is the main reason 
their selection. 
For evaluating the performance, the abstraction levels 
and rapid-prototyping ability a neural network gets 
implemented using both frameworks and classifying 
handwritten digits of the MNIST dataset (LeCun Y.L. 
1998). This prototype network will consist of 8 layers, 
transforming the 28- by 28-pixel sized images on its 
ways through the network and at the end predicting the 
result. 
 
2. BASICS OF ARTIFICIAL INTELLIGENCE 
The main goal of the specialist division of artificial 
engineers and scientists is to create a system which is 
capable of making decisions like a real human being 
would do. To keep the complexity of such systems at a 
still computable and achievable level an AI or neural 
network is engineered for one single, very specific 
application only. Such applications may be daily things 
such as “face-unlock” on smartphones or customer 
analytics on online platforms, like amazon. 
To enable a computer system to perform such complex 
tasks they need to be taught and trained. This training 
phase is a mandatory step and can be done in a few 
different approaches. In this case supervised learning 
(Schmidhuber 2015) will be used, where all training 
data is connotated with the correct answer the system 
should give. The AI is fed with this dataset repeatedly 
until it is able to discover different patterns in the data 
to predict the correct answers for the given information. 
After each so-called batch, which represents a small 
subset of the training data, the network is given 
feedback on its answers, providing possibilities to 
change its internal parameters to improve its accuracy. 
Because the system is supervised and feedback is given 
throughout the complete training process, this method is 
called supervised learning. 
After the network is trained to a sufficient level, which 
is determined by an error function or error rate, the AI is 
ready to be deployed on the final product. Training in 
the beginning plus setting up all different parameters 
and the datasets is quite time consuming and is 
therefore mostly done on specific hardware to 
accelerate these processes. If the network is smaller in 
most cases the training is done by one graphics 
processing unit (GPU). For larger scale applications the 
training phase is done on multiple GPUs or a server 
farm, sometimes even on cloud servers. 
 
2.1. Neuronal Nets 
In case of this prototype where handwritten digits will 
be classified, image patterns need to be found in the 
data. For this specific task neural networks (Lunze 
2016) provide a perfect fit. Such networks consist of 
single neurons that try to mimic the functionality of real 
neurons in the human brain, both give a specific output, 
if its input connections are stimulated in a certain way. 
In case of a simulated neuron of a neuronal network 

these inputs and outputs are not limited in quantity, 
enabling the neuron to be connected to one or more 
neurons in its environment. Based on a specific 
mathematical function like sigmoid, also called the 
activation function of a neuron, the output is set in a 
specific way (Gershenson 2003). 
The connections between different neurons transporting 
data from one neuron to another through the network 
are called edges. These edges may be simply used for 
transport between neurons, but most certainly will also 
introduce some weights on the data. By a multiplication 
with a variable factor the edge values are altered and 
therefore able to inhibit or constrain the transport of 
data to specific neurons. By varying those weights of 
every edge in the network the AI is adapting to given 
data and optimizing its error rate to a minimum and 
hence learning (Schmidhuber 2015). 
To keep all neurons in a logical and clear order, a neural 
network consist of different layers, each representing a 
single functional group of neurons doing simple 
operations on the given data. A simple network for 
image recognition may for example involve an input 
layer, containing one neuron per image pixel, of many 
intermediate or hidden layers and an output layer, where 
each neuron is representing one possible outcome of the 
network. As the tasks of a network get more complex its 
layer count increases as well as the neuron count per 
layer, which quickly bursts the limit of network 
complexity and demonstrates why an AI should be 
developed for one single application. 
 
2.2. Convolution 
A specific type of neural network used in image 
recognition is called convolutional neural network 
(LeCun 1995), which uses the concept of convolution to 
extract features out of the given pictures. 
Convolution is done by sliding a filter of a given size 
over the whole image and calculating the mean value of 
all pixels within the filter. The calculated value is then 
set as new pixel value for the next layer. This 
convolution layer is always paired with a pooling layer, 
summing up a small area around a pixel or just taking 
the maximum value and therefore reducing the size of 
the image. By convoluting and decreasing the image´s 
size, features and patterns get picked up by the network 
and overall performance is increased. The combination 
of a convoluting and a pooling layer is very common in 
image recognition and is often used more than once to 
decrease data size further and extract features. 
 
3. METHODOLOGICAL APPROACH 
In order to be able to objectively compare high- and 
low-level frameworks to each other to representatives 
have been chosen. Both frameworks are based on the 
same backend software which in this case is 
Tensorflow.  
To compare performance, complexity, usability and 
rapid-prototyping abilities a prototype convolutional 
neural network gets implemented using both 
frameworks. The goal of this prototype is to be 
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demanding enough to show differences in compute 
performance but at the same time keep training times to 
a minimum and get a decent insight in working with the 
frameworks. For this task classification of handwritten 
digits of the MNIST dataset was selected since working 
with 28- by 28-pixel images in multiple layers requires 
a fair bit of computation power and will show possible 
bottlenecks or high optimized parts within the 
framework. 
After the implementation the prototypes of both 
frameworks will get trained and tested on the same 
datasets to keep errors in accuracy to a minimum. 
 
 

 
Figure 1: A handwritten digit of the MNIST dataset, 
representing the digit eight as used in the prototype 
(Gazi Yalcin O. 2018). 

 
4. PROTOTYPE  
As representative for high level frameworks Keras was 
chosen for its high abstraction level and its current 
spread on AI topics. On the other hand, Tensorflow was 
selected as low-level representative based on the high 
scalability and the opportunity to customize and adapt 
nearly every process within the framework.  Tensorflow 
may also easily be used as base for Keras to build on, so 
both frameworks can be objectively compared using the 
same basic software, regarding data processing and 
control flow. Both frameworks are supported by big and 
active communities and are documented very well 
online making them very attractive to potential users. 
Also, it is unlikely for them to stop getting frequent 
support from its developers. 
 
4.1. Concept 
To evaluate all pros and cons of both frameworks a 
prototype network is implemented using both. This 
convolutional neural network will be developed to 
classify handwritten digits. The internal structure of the 
network itself will be explained in detail in the next 
paragraph. To train both networks to a comparable level 
the Modified National Institute of Standards and 
Technology (MNIST) dataset (LeCun Y.L. 1998) will 
be applied, containing 60,000 images for training and 
10,000 images of digits for evaluating the accuracy. All 
these images were created by 500 different people, 
offering plenty variation in the dataset to prevent the 
network from overtraining on special features of unique 

handwritings. An example for such a handwritten digit 
may be seen in Figure 1. 
This prototype was chosen on the premises of being 
complex enough to use advanced features of both 
frameworks and provide long enough training phases to 
compare the efficiency of both environments. Yet it is 
quite simple to implement the network with a few basic 
layers commonly used in many applications working in 
the same basic principle in both Tensorflow and Keras. 
 
4.2. Network 
As mentioned before the best network for such an 
image recognition task is a convolutional neural 
network, in this case with eight layers and two stacked 
cascades of convolution and pooling layers. 
Figure 2 shows the structure and dimensions of this 
network, all noted numbers are indications for used 
neurons in these layers. 
At the input layer a 28x28 pixel greyscale image of a 
handwritten digit gets fed into the network, where the 
information of each pixel is taken by one neuron. The 
first cascade of convolution and pooling filter takes the 
original image, convolutes and resizes it to a dimension 
of 14 pixels squared. This process is repeated in the 
next cascade, which resizes the data to 7 pixels squared. 
This method greatly reduces data inside the network and 
keeps the number of neurons down, therefore increasing 
the system’s performance in training by a significant 
amount. 
This step is followed by two fully connected layers, in 
which every neuron is linked to every other neuron 
within the layer. Such layers are very good in 
combining all the features detected by predecessor 
layers. They associate multiple inputs and try to predict 
the correct digit based on the detected features. Since 
the data is coming out from the last layer in a 7x7 
format with 64 channels or features for the last pooling 
layer, this layer consists of a great number of neurons. 
To further optimize and increase accuracy of network 
predictions, another fully connected layer, this time 
with 1000 neurons, is added onto the back. 
The last needed part of the network is an output layer, 
which consist of the amount of prediction outcomes 
possible. In this case this layer features ten neurons 
because there are ten digits from 0 to 9 for the network 
to predict. At the end each neuron shows an output 
value from 0 to 1, representing the probability for the 
picture to be this specific number.  
 

 
Figure 2: Structure of the Prototype Network, Yellow 
and Red Layers Represent Convolution and Pooling 
Layers Respectively. 
 
4.3. Evaluation Criteria 
To evaluate both types of frameworks based on 
objective criteria, they are tested on the following four 
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aspects: Performance or accuracy, rapid-prototyping 
capability, expandability and training performance. All 
of these properties are crucial for industrial applications. 
The most critical point of a neural network is its ability 
to make accurate decisions and predictions, therefore 
the performance of the network and its underlying 
framework is key. Also, very important is the ability of 
a framework to allow its users to create rapid prototypes 
for the first evaluation of ideas or new concepts. This 
also saves a lot of development time and will be mainly 
evaluated based on the ease of use when implementing 
the prototypes. This feature makes great difference in 
project costs, since faster development time directly 
correlate to less financial effort for companies. 
Often frameworks do not deliver all needed 
functionality out of the box, this is where possible 
expandability of such systems comes into play. If the 
environment is easily adapted to new functionality and 
new concepts, much effort can be saved in this stage. 
The last important criterion is training performance and 
the ability to upscale the training. Since each neural 
network nowadays is trained on a GPU, easy and 
efficient support for such hardware units plays a huge 
role in an overall performance of the network. This gets 
tested by training the network on a GPU, since the 
process as well as the code is nearly the same as for 
training on specified Tensorflow Processing Units 
(TPU), explicitly made for training AI. This opens the 
possibility to further improve AI performance, while 
still using the same training time, or cutting the training 
effort and keep the quality of the final network. These 
options are highly beneficial for commercial or 
industrial applications. 
 
5. TENSORFLOW 
Tensorflow was and still is developed by the Google 
Brain Team. It is specified in data processing on 
heterogenic systems, enabling the framework to be very 
efficient on large multi-core processing units, GPUs 
und also Google’s own Application Specific Integrated 
Circuit (ASIC) device called TPU. Those TPUs have 
been solely created to accelerate the training process of 
neural networks and AI in general (Abadi 2016).  
The unique features of Tensorflow are the data flow 
graph and the so-called tensors. The Dataflow graph is a 
directed graph, which describes the proceeding of data 
through the network. Each node of this graph is a 
representative for a layer in the prototype network and 
abstracts one or more operations on the data. The term 
tensor in this case describes an n-dimensional data field, 
may being one of Tensorflow’s base datatypes, such as 
int32, float32 or string. A tensor is always used to hold 
data between nodes in the graph, there for a node needs 
at least an input- and output-tensor. The filling state or 
dimensions of such tensors may vary from operation to 
operation, since not every operation is based on the 
same dimensions (Abadi 2016).  
A matrix-multiplication of a polling node may, for 
example, change the dimension of the data based on its 
input sizes. Such a graph is shown in Figure 3. This 

graph is automatically generated by the framework and 
represents the frameworks internal structure of the 
prototype. 
 

 
Figure 3: Tensorflow Graph of the Prototype 
 
The major upside of Tensorflow is the ability to scale 
the systems very efficiently based on hardware 
acceleration. It is easy to execute parts of the dataflow 
graph on a GPU or TPU. If needed it is even possible to 
process the whole graph onto one of these devices.  
Since Tensorflow is based on a very low abstraction 
level, every little function can be tweaked and adjusted, 
which results in an immensely high optimizing potential 
and if you are willing to spend some time, also in very 
efficient and nearly infinitely scalable applications. 
However low abstraction levels are not only positive, 
they are also Tensorflow’s greatest downside. Since 
rapid-prototyping requires a fast and easy to use 
environment, it is quite challenging to create a quick 
prototype of a desired network. Each function needs a 
specific amount of information about its data and 
parameters. Those values need to be set in order to 
achieve a decent accuracy of the network or make it 
work in the first place. So, a lot of knowledge and a 
long adjustment period is needed to get the most out of 
Tensorflow networks. Using Tensorflow is therefore 
prolonging time to market and development cost by big 
amounts. 
Setting up the environment to use Tensorflow is not 
challenging and very well documented on the webpage. 
After installing all needed libraries for GPU support, it 
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is a matter of changing a few lines of code to get 
Tensorflow to also use available GPUs or TPUs. 
Tensorflow features a steep learning curve and needs 
some time to get used to and be productive with the 
environment. Once you are comfortable with the API 
there are a lot of useful tools like the included visualizer 
called TensorBoard. This tool is a great way to double 
check the correct layout of your neural network and also 
visually see the ongoing training stats like accuracy and 
training time in charts. 
 
6. KERAS 
Keras is an AI framework for Deep Learning developed 
by Francois Chollet in 2015. It features a high 
abstraction level and is available for Open-Source use. 
Since Keras only is a Python library that needs to be 
based on a backend software, it can be paired with a few 
different low-level systems such as Tensorflow, CNTK 
or Theano. The goal of Keras is to abstract from 
complex API functions and tons of different tweakable 
parameters and offer the opportunity to quickly develop 
a quite powerful neural network out of a few 
components (Keras 2019). With this approach it is easy 
to implement first prototypes or react to fast changing 
specifications. It is also well documented and does not 
need a lot of special know-how in neural networks to 
get started with development. Since Keras is based on a 
low-level framework it inherits much of the 
performance benefits of its base framework. 
Due to not having the opportunity to solve all problems 
in high-level code tuning, some parameters may be 
necessary at one point. It is possible to write code 
directly in base-level framework syntax and abstraction 
to further optimize (Keras 2019). 
Because Keras in this case is based on Tensorflow it 
also uses its dataflow graph mechanisms and therefore 
generates a visual representation of the internal 
network, which can be seen in Figure 4. In this figure 
the ‘train’ node of Figure 3 is decomposed in its 
subfunctions ‘metrics’ and ‘loss’ shown in the top of the 
graphic. 
The framework and the workflow itself was easy and 
fast to set up once all required libraries and the 
background framework was installed. Since Keras is a 
high-level framework with great abstraction getting 
used to working with the environment and different 
abstract layers was fast. An early prototype of the 
network could be developed within a few hours using 
the ‘Sequential Model’ offered by the framework, 
where layers only get added to one another in a 
sequential fashion. All functionality not available in 
basic layers and functions may be added or customized 
in any way. This however needs to be done in the 
abstraction level of the basic framework, which in this 
case requires the developer to be able the use 
Tensorflow as well as Keras. The documentation of the 
framework is based on very detailed descriptions of all 
used parameters and settings. This took a while since 
there are no real examples on how to correctly use the 
given API functions. But since there is a big community 

behind Keras it was possible to find all needed 
information online. 
 

 
Figure 4: Graph of the Keras Network, Created by 
Tensorflow Backend Software. 
 
7. TESTING ENVIRONMENT 
As testing environment, a computer with a Windows 10 
operating system was used. The system is based on an 
Intel i7 5820k Processor, 16 gigabytes of DDR4 RAM 
and a Nvidia GTX1080Ti GPU. 
For the frameworks a Python environment was needed, 
which was used in version 3.6.2 and 64 bit. This 
enabled the test to use Tensorflow version 1.7.0 and 
Keras version 2.2.0. To test both training performances 
on CPU and GPU libraries from Nvidia were used. For 
CUDA support version 9.0.176 was paired with the 
neural network library cuDNN version 9.0 from Nvidia. 
At the time of testing an evaluation all the above listed 
pieces of software had been the latest stable versions. 
 
7.1. Testing Procedure 
Both networks were trained on the CPU of the system 
as well as on the GPU of the system. Each test was 
conducted 5 times to rule out variances in accuracy or 
training speed. All results shown further on are averages 
over these 5 test runs, which were completed with a 
batch size of 128 images per batch and 20 revolutions of 
the dataset. One single iteration over all the batches of 
the dataset is called an epoch further on.  
 
8. TEST RESULTS 
All conducted tests have shown that the combination of 
the network, optimizer and dataset would have also 
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been nearly the same if only half of the epochs had been 
used for training. After the 10th epoch only minor 
improvements can be seen in accuracy. In most cases 
such minor increases in accuracy are not worth extra 
training time, since accuracy is at this point already at 
about 98 to 99 percent. Accuracy in this case directly 
relates to correctly classified digits. However, Keras 
reaches its final accuracy level a bit faster than the 
Tensorflow network, which gives the possibility in 
training even less while reaching the same quality. 
 
8.1. Tensorflow 
As shown in Table 1, Tensorflow reaches average 
accuracy of 0.9880 or 98.80 percent by training the 
network on the system’s CPU, which takes about 16 
minutes of training time. 
In contrast, using hardware acceleration from the 
system’s GPU an average accuracy of 0.9895 was 
reached. This took around 40.2 seconds and therefore 
drastically improves efficiency. By shortening training 
times more development may be done in the same 
amount of time, which results in well-defined networks 
being able to deliver better quality results. Which means 
the GPU training recognizes digits with an equal 
precision but does this approximately 25 times faster.  
 
Table 1: Results for Training on CPU and GPU using 
Tensorflow, all Time Measurements are noted in 
Seconds. 

 
 

8.2. Keras 
As shown in Table 2 Keras reaches an average accuracy 
of 0.9989 on the CPU, which takes around 510 seconds. 
With this accuracy only about 1 in 1000 digits is 
detected wrong. By training the network on the GPU 
the same accuracy can be reached. The only difference 
in this case is the reduced training time needed to 53 
seconds on average. In all test runs Keras reached its 
peak accuracy level a few epochs faster than 
Tensorflow did, whereas overall training times on GPU 
based training was longer. 
 
8.3. Comparison of results 
By looking at the results one can quickly see the 
performance and scalability benefit of Tensorflow, 
being about 31 percent faster when also using the 
system’s available GPU to process data. By looking at 
the CPU results at first glance there seems to be an error 
in testing due to the longer training time needed by the 
more performant framework Tensorflow. But this 
difference in time is caused by not tuning every little 
parameter to the best possible value, which represents 

using the framework in a way an engineer would do 
when development time is limited and there is no 
chance to tweak and optimize every little setting. 
Additionally the Tensorflow code consists mainly of 
self-implementations, where by using Keras everything 
for this prototype needed is already provided by the 
framework environment. This approach also highlights 
the difference in system modelling between both 
frameworks. Tensorflow all task and groups need to be 
modelled quite detailed, whereas Keras enforces a more 
abstract modelling approach by only needing very 
abstract process descriptions. Both representatives were 
used as they would have been in a more complex and 
bigger industrial environment, to keep objective 
comparison possible. 
 
Table 2: Results for Training on CPU and GPU using 
Keras, all Time Measurements are noted in Seconds. 

 
 
9. CONCLUSION 
Although the test series showed performance benefits 
when using Tensorflow in combination with hardware 
accelerators, the choice of best framework depends on 
the intended application and needed key features. If data 
amounts and complexity stay within average, the high 
abstraction level of Keras is far superior over the high 
optimizing potential of Tensorflow. Giving the user the 
opportunity to develop faster prototypes and test more 
revisions improves the quality of the final network way 
more than modelling every single function in detail. 
If Keras is then also based on Tensorflow as backend 
software, they form a great symbiosis where 
weaknesses of both get covered by the other framework. 
If an operation is missing in the Keras framework, it is 
possible to add this functionality in highly optimized 
Tensorflow native code and keep the rest of the 
application clearly arranged in high-level code, 
therefore having the benefit of fast development times 
combined with great performance. 
These features make Keras, and high-level frameworks 
in general more suited for small to medium sized tasks, 
where rapid-prototyping is essential and development 
time advantages weigh more than pure performance and 
customizability. Therefore, Keras is better in keeping 
the costs down in development while still delivering 
good quality results. Although expandability is not as 
simple as with Tensorflow, all other key features of an 
efficient AI framework for medium sized projects are 
covered by the Keras framework, making it great for 
embedded projects like facial recognition on 
smartphones or interpreting telemetry data of robots and 
machines. 
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Large systems, like customer analyzing, however, suffer 
performance hits caused by the abstraction level and 
overhead of Keras where Tensorflow on the other hand 
is the perfect choice. Due to highly specific and custom 
modelled processes working with huge amounts of data, 
Tensorflow is able to deliver the required performance. 
However, to achieve these results substantial expertise 
and AI know-how must already be present within the 
development team. Based on the evaluated key criteria, 
low-level frameworks like Tensorflow tend to be more 
useful in scenarios where huge amounts of sensor or 
image data need to be processed. One example of such 
an extremely demanding application would be 
autonomous driving of vehicles, where lots of sensors 
need to be checked thousand times per second and 
correct decisions need to be made near instantly. To 
model such networks the fine granularity and the 
optimization potential of Tensorflow and low-level 
frameworks in general is essential in developing 
efficient and powerful products and keep development 
effort and therefore product costs as low as possible. 
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