
SOFTWARE FRAMEWORKS FOR ARTIFICIAL INTELLIGENCE: COMPARSION OF
LOW-LEVEL AND HIGH-LEVEL APPROACHES

Michael Bogner(a), Florian Weindl(b), Franz Wiesinger(c)

(a), (b), (c) University of Applied Sciences Upper Austria – Department of Embedded Systems Engineering
Softwarepark 11, A-4232 Hagenberg, Austria

(a)michael.bogner@gh-hagenberg.at, (b)florian.weindl@fh-hagenberg.at, (c) franz.wiesinger@fh-hagenberg.at

ABSTRACT
As nearly every artificial intelligence application is
based on a framework, using the best fitting one for the
task is key in developing an efficient solution quickly.
Since there are two main types of frameworks, based on
low and high abstraction level approaches, these two
types will get compared and evaluated throughout this
paper using Tensorflow and Keras as representatives.
Key features of artificial intelligence frameworks for
industrial applications are performance, expandability,
abstraction level and therefore ease of use for rapid
prototyping. All those features are major factors to keep
development time and costs as low as possible, while
maximizing product quality. To evaluate both
approaches by these criteria a neural network
classifying handwritten digits is implemented.

Keywords: tensorflow, keras, neural network,
evaluation

1. INTRODUCTION
Since the middle of the 20th century scientists have been
trying to implement forms of artificial intelligence on
computer systems. As time went by, those systems have
grown from small programs to enormous applications.
For each new application of artificial intelligence (AI) a
specific neural network was designed and implemented,
specifically tailored to the needs of the application. This
had to be done since there had not been enough
computing power and memory available to develop
more general solutions.
Since implementing all basic functionalities each time
from scratch is very time consuming and huge amounts
of computing power became available year after year,
artificial intelligence frameworks have been developed.
These frameworks pack useful functionality and a basic
environment into a reusable package, making
development of bigger and better programs quicker and
more convenient. Today nearly all AI applications are
based on such software frameworks enabling high
flexibility and performance all while keeping
development time down to a minimum. Most of the
time these generally very basic, reusable software
packages are customizable to fit very specific and
demanding tasks.

Since artificial intelligence and neural networks are
widely used in many commercial products and
industrial applications, the number of frameworks being
available keeps growing. Based on this fact it is not that
easy to choose a fitting framework for a specific task or
product. If the wrong software is used, many problems
may arise. Those problems may range from slower
development and consequently to a longer time to
market, to a complete project failure caused by major
performance hits.
Some of these artificial intelligence frameworks stand
out from the crowd because they are based on a very
efficient concept or they are backed and continuously
developed by concerns such as Google.
The goal of this paper is to compare the two basic
concepts of artificial intelligence frameworks: high- and
low-level approaches. Frameworks using a high-level
approach do not clutter function interfaces and
application programming interfaces (API) with
unneeded parameters and details. By using such an
approach implementation is done based on more
abstract functionality and system blocks,
which makes development fast and easier to begin with.
Low-level frameworks on the other hand tend to give a
very detailed and powerful API, enabling the developers
and engineers to tweak and optimize every little setting
and element of every component of the complete
system. This ability enforces great flexibility and
efficient applications but comes with costs of longer
development times and more needed know-how of all
processes in detail.
As representatives for high- and low-level approaches
Tensorflow (Google Inc. 2019) and Keras (Keras Home
2019) have been selected, since both are very widely
spread in the research community and in industrial
environments as well.
Theano (Theano 2019) would have also been an
available option as low-level framework. Based on the
NumPy (NumPy 2019) library the software is able to
translate all operations into efficient C programming
language, enabling high performance.
Another solid choice for a high abstraction level
framework would have been Caffe (Berkeley AI
Research 2019) due to efficient grafics processing units
(GPU) usage and abstract modularization.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

96

DOI: https://doi.org/10.46354/i3m.2019.emss.016

mailto:michael.bogner@gh-hagenberg.at
mailto:florian.weindl@fh-hagenberg.at
mailto:franz.wiesinger@fh-hagenberg.at

The fact that Keras, as high-level framework, is based
on Tensorflow ensures the opportunity to compare both
frameworks against each other and is the main reason
their selection.
For evaluating the performance, the abstraction levels
and rapid-prototyping ability a neural network gets
implemented using both frameworks and classifying
handwritten digits of the MNIST dataset (LeCun Y.L.
1998). This prototype network will consist of 8 layers,
transforming the 28- by 28-pixel sized images on its
ways through the network and at the end predicting the
result.

2. BASICS OF ARTIFICIAL INTELLIGENCE
The main goal of the specialist division of artificial
engineers and scientists is to create a system which is
capable of making decisions like a real human being
would do. To keep the complexity of such systems at a
still computable and achievable level an AI or neural
network is engineered for one single, very specific
application only. Such applications may be daily things
such as “face-unlock” on smartphones or customer
analytics on online platforms, like amazon.
To enable a computer system to perform such complex
tasks they need to be taught and trained. This training
phase is a mandatory step and can be done in a few
different approaches. In this case supervised learning
(Schmidhuber 2015) will be used, where all training
data is connotated with the correct answer the system
should give. The AI is fed with this dataset repeatedly
until it is able to discover different patterns in the data
to predict the correct answers for the given information.
After each so-called batch, which represents a small
subset of the training data, the network is given
feedback on its answers, providing possibilities to
change its internal parameters to improve its accuracy.
Because the system is supervised and feedback is given
throughout the complete training process, this method is
called supervised learning.
After the network is trained to a sufficient level, which
is determined by an error function or error rate, the AI is
ready to be deployed on the final product. Training in
the beginning plus setting up all different parameters
and the datasets is quite time consuming and is
therefore mostly done on specific hardware to
accelerate these processes. If the network is smaller in
most cases the training is done by one graphics
processing unit (GPU). For larger scale applications the
training phase is done on multiple GPUs or a server
farm, sometimes even on cloud servers.

2.1. Neuronal Nets
In case of this prototype where handwritten digits will
be classified, image patterns need to be found in the
data. For this specific task neural networks (Lunze
2016) provide a perfect fit. Such networks consist of
single neurons that try to mimic the functionality of real
neurons in the human brain, both give a specific output,
if its input connections are stimulated in a certain way.
In case of a simulated neuron of a neuronal network

these inputs and outputs are not limited in quantity,
enabling the neuron to be connected to one or more
neurons in its environment. Based on a specific
mathematical function like sigmoid, also called the
activation function of a neuron, the output is set in a
specific way (Gershenson 2003).
The connections between different neurons transporting
data from one neuron to another through the network
are called edges. These edges may be simply used for
transport between neurons, but most certainly will also
introduce some weights on the data. By a multiplication
with a variable factor the edge values are altered and
therefore able to inhibit or constrain the transport of
data to specific neurons. By varying those weights of
every edge in the network the AI is adapting to given
data and optimizing its error rate to a minimum and
hence learning (Schmidhuber 2015).
To keep all neurons in a logical and clear order, a neural
network consist of different layers, each representing a
single functional group of neurons doing simple
operations on the given data. A simple network for
image recognition may for example involve an input
layer, containing one neuron per image pixel, of many
intermediate or hidden layers and an output layer, where
each neuron is representing one possible outcome of the
network. As the tasks of a network get more complex its
layer count increases as well as the neuron count per
layer, which quickly bursts the limit of network
complexity and demonstrates why an AI should be
developed for one single application.

2.2. Convolution
A specific type of neural network used in image
recognition is called convolutional neural network
(LeCun 1995), which uses the concept of convolution to
extract features out of the given pictures.
Convolution is done by sliding a filter of a given size
over the whole image and calculating the mean value of
all pixels within the filter. The calculated value is then
set as new pixel value for the next layer. This
convolution layer is always paired with a pooling layer,
summing up a small area around a pixel or just taking
the maximum value and therefore reducing the size of
the image. By convoluting and decreasing the image´s
size, features and patterns get picked up by the network
and overall performance is increased. The combination
of a convoluting and a pooling layer is very common in
image recognition and is often used more than once to
decrease data size further and extract features.

3. METHODOLOGICAL APPROACH
In order to be able to objectively compare high- and
low-level frameworks to each other to representatives
have been chosen. Both frameworks are based on the
same backend software which in this case is
Tensorflow.
To compare performance, complexity, usability and
rapid-prototyping abilities a prototype convolutional
neural network gets implemented using both
frameworks. The goal of this prototype is to be

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

97

demanding enough to show differences in compute
performance but at the same time keep training times to
a minimum and get a decent insight in working with the
frameworks. For this task classification of handwritten
digits of the MNIST dataset was selected since working
with 28- by 28-pixel images in multiple layers requires
a fair bit of computation power and will show possible
bottlenecks or high optimized parts within the
framework.
After the implementation the prototypes of both
frameworks will get trained and tested on the same
datasets to keep errors in accuracy to a minimum.

Figure 1: A handwritten digit of the MNIST dataset,
representing the digit eight as used in the prototype
(Gazi Yalcin O. 2018).

4. PROTOTYPE
As representative for high level frameworks Keras was
chosen for its high abstraction level and its current
spread on AI topics. On the other hand, Tensorflow was
selected as low-level representative based on the high
scalability and the opportunity to customize and adapt
nearly every process within the framework. Tensorflow
may also easily be used as base for Keras to build on, so
both frameworks can be objectively compared using the
same basic software, regarding data processing and
control flow. Both frameworks are supported by big and
active communities and are documented very well
online making them very attractive to potential users.
Also, it is unlikely for them to stop getting frequent
support from its developers.

4.1. Concept
To evaluate all pros and cons of both frameworks a
prototype network is implemented using both. This
convolutional neural network will be developed to
classify handwritten digits. The internal structure of the
network itself will be explained in detail in the next
paragraph. To train both networks to a comparable level
the Modified National Institute of Standards and
Technology (MNIST) dataset (LeCun Y.L. 1998) will
be applied, containing 60,000 images for training and
10,000 images of digits for evaluating the accuracy. All
these images were created by 500 different people,
offering plenty variation in the dataset to prevent the
network from overtraining on special features of unique

handwritings. An example for such a handwritten digit
may be seen in Figure 1.
This prototype was chosen on the premises of being
complex enough to use advanced features of both
frameworks and provide long enough training phases to
compare the efficiency of both environments. Yet it is
quite simple to implement the network with a few basic
layers commonly used in many applications working in
the same basic principle in both Tensorflow and Keras.

4.2. Network
As mentioned before the best network for such an
image recognition task is a convolutional neural
network, in this case with eight layers and two stacked
cascades of convolution and pooling layers.
Figure 2 shows the structure and dimensions of this
network, all noted numbers are indications for used
neurons in these layers.
At the input layer a 28x28 pixel greyscale image of a
handwritten digit gets fed into the network, where the
information of each pixel is taken by one neuron. The
first cascade of convolution and pooling filter takes the
original image, convolutes and resizes it to a dimension
of 14 pixels squared. This process is repeated in the
next cascade, which resizes the data to 7 pixels squared.
This method greatly reduces data inside the network and
keeps the number of neurons down, therefore increasing
the system’s performance in training by a significant
amount.
This step is followed by two fully connected layers, in
which every neuron is linked to every other neuron
within the layer. Such layers are very good in
combining all the features detected by predecessor
layers. They associate multiple inputs and try to predict
the correct digit based on the detected features. Since
the data is coming out from the last layer in a 7x7
format with 64 channels or features for the last pooling
layer, this layer consists of a great number of neurons.
To further optimize and increase accuracy of network
predictions, another fully connected layer, this time
with 1000 neurons, is added onto the back.
The last needed part of the network is an output layer,
which consist of the amount of prediction outcomes
possible. In this case this layer features ten neurons
because there are ten digits from 0 to 9 for the network
to predict. At the end each neuron shows an output
value from 0 to 1, representing the probability for the
picture to be this specific number.

Figure 2: Structure of the Prototype Network, Yellow
and Red Layers Represent Convolution and Pooling
Layers Respectively.

4.3. Evaluation Criteria
To evaluate both types of frameworks based on
objective criteria, they are tested on the following four

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

98

aspects: Performance or accuracy, rapid-prototyping
capability, expandability and training performance. All
of these properties are crucial for industrial applications.
The most critical point of a neural network is its ability
to make accurate decisions and predictions, therefore
the performance of the network and its underlying
framework is key. Also, very important is the ability of
a framework to allow its users to create rapid prototypes
for the first evaluation of ideas or new concepts. This
also saves a lot of development time and will be mainly
evaluated based on the ease of use when implementing
the prototypes. This feature makes great difference in
project costs, since faster development time directly
correlate to less financial effort for companies.
Often frameworks do not deliver all needed
functionality out of the box, this is where possible
expandability of such systems comes into play. If the
environment is easily adapted to new functionality and
new concepts, much effort can be saved in this stage.
The last important criterion is training performance and
the ability to upscale the training. Since each neural
network nowadays is trained on a GPU, easy and
efficient support for such hardware units plays a huge
role in an overall performance of the network. This gets
tested by training the network on a GPU, since the
process as well as the code is nearly the same as for
training on specified Tensorflow Processing Units
(TPU), explicitly made for training AI. This opens the
possibility to further improve AI performance, while
still using the same training time, or cutting the training
effort and keep the quality of the final network. These
options are highly beneficial for commercial or
industrial applications.

5. TENSORFLOW
Tensorflow was and still is developed by the Google
Brain Team. It is specified in data processing on
heterogenic systems, enabling the framework to be very
efficient on large multi-core processing units, GPUs
und also Google’s own Application Specific Integrated
Circuit (ASIC) device called TPU. Those TPUs have
been solely created to accelerate the training process of
neural networks and AI in general (Abadi 2016).
The unique features of Tensorflow are the data flow
graph and the so-called tensors. The Dataflow graph is a
directed graph, which describes the proceeding of data
through the network. Each node of this graph is a
representative for a layer in the prototype network and
abstracts one or more operations on the data. The term
tensor in this case describes an n-dimensional data field,
may being one of Tensorflow’s base datatypes, such as
int32, float32 or string. A tensor is always used to hold
data between nodes in the graph, there for a node needs
at least an input- and output-tensor. The filling state or
dimensions of such tensors may vary from operation to
operation, since not every operation is based on the
same dimensions (Abadi 2016).
A matrix-multiplication of a polling node may, for
example, change the dimension of the data based on its
input sizes. Such a graph is shown in Figure 3. This

graph is automatically generated by the framework and
represents the frameworks internal structure of the
prototype.

Figure 3: Tensorflow Graph of the Prototype

The major upside of Tensorflow is the ability to scale
the systems very efficiently based on hardware
acceleration. It is easy to execute parts of the dataflow
graph on a GPU or TPU. If needed it is even possible to
process the whole graph onto one of these devices.
Since Tensorflow is based on a very low abstraction
level, every little function can be tweaked and adjusted,
which results in an immensely high optimizing potential
and if you are willing to spend some time, also in very
efficient and nearly infinitely scalable applications.
However low abstraction levels are not only positive,
they are also Tensorflow’s greatest downside. Since
rapid-prototyping requires a fast and easy to use
environment, it is quite challenging to create a quick
prototype of a desired network. Each function needs a
specific amount of information about its data and
parameters. Those values need to be set in order to
achieve a decent accuracy of the network or make it
work in the first place. So, a lot of knowledge and a
long adjustment period is needed to get the most out of
Tensorflow networks. Using Tensorflow is therefore
prolonging time to market and development cost by big
amounts.
Setting up the environment to use Tensorflow is not
challenging and very well documented on the webpage.
After installing all needed libraries for GPU support, it

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

99

is a matter of changing a few lines of code to get
Tensorflow to also use available GPUs or TPUs.
Tensorflow features a steep learning curve and needs
some time to get used to and be productive with the
environment. Once you are comfortable with the API
there are a lot of useful tools like the included visualizer
called TensorBoard. This tool is a great way to double
check the correct layout of your neural network and also
visually see the ongoing training stats like accuracy and
training time in charts.

6. KERAS
Keras is an AI framework for Deep Learning developed
by Francois Chollet in 2015. It features a high
abstraction level and is available for Open-Source use.
Since Keras only is a Python library that needs to be
based on a backend software, it can be paired with a few
different low-level systems such as Tensorflow, CNTK
or Theano. The goal of Keras is to abstract from
complex API functions and tons of different tweakable
parameters and offer the opportunity to quickly develop
a quite powerful neural network out of a few
components (Keras 2019). With this approach it is easy
to implement first prototypes or react to fast changing
specifications. It is also well documented and does not
need a lot of special know-how in neural networks to
get started with development. Since Keras is based on a
low-level framework it inherits much of the
performance benefits of its base framework.
Due to not having the opportunity to solve all problems
in high-level code tuning, some parameters may be
necessary at one point. It is possible to write code
directly in base-level framework syntax and abstraction
to further optimize (Keras 2019).
Because Keras in this case is based on Tensorflow it
also uses its dataflow graph mechanisms and therefore
generates a visual representation of the internal
network, which can be seen in Figure 4. In this figure
the ‘train’ node of Figure 3 is decomposed in its
subfunctions ‘metrics’ and ‘loss’ shown in the top of the
graphic.
The framework and the workflow itself was easy and
fast to set up once all required libraries and the
background framework was installed. Since Keras is a
high-level framework with great abstraction getting
used to working with the environment and different
abstract layers was fast. An early prototype of the
network could be developed within a few hours using
the ‘Sequential Model’ offered by the framework,
where layers only get added to one another in a
sequential fashion. All functionality not available in
basic layers and functions may be added or customized
in any way. This however needs to be done in the
abstraction level of the basic framework, which in this
case requires the developer to be able the use
Tensorflow as well as Keras. The documentation of the
framework is based on very detailed descriptions of all
used parameters and settings. This took a while since
there are no real examples on how to correctly use the
given API functions. But since there is a big community

behind Keras it was possible to find all needed
information online.

Figure 4: Graph of the Keras Network, Created by
Tensorflow Backend Software.

7. TESTING ENVIRONMENT
As testing environment, a computer with a Windows 10
operating system was used. The system is based on an
Intel i7 5820k Processor, 16 gigabytes of DDR4 RAM
and a Nvidia GTX1080Ti GPU.
For the frameworks a Python environment was needed,
which was used in version 3.6.2 and 64 bit. This
enabled the test to use Tensorflow version 1.7.0 and
Keras version 2.2.0. To test both training performances
on CPU and GPU libraries from Nvidia were used. For
CUDA support version 9.0.176 was paired with the
neural network library cuDNN version 9.0 from Nvidia.
At the time of testing an evaluation all the above listed
pieces of software had been the latest stable versions.

7.1. Testing Procedure
Both networks were trained on the CPU of the system
as well as on the GPU of the system. Each test was
conducted 5 times to rule out variances in accuracy or
training speed. All results shown further on are averages
over these 5 test runs, which were completed with a
batch size of 128 images per batch and 20 revolutions of
the dataset. One single iteration over all the batches of
the dataset is called an epoch further on.

8. TEST RESULTS
All conducted tests have shown that the combination of
the network, optimizer and dataset would have also

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

100

been nearly the same if only half of the epochs had been
used for training. After the 10th epoch only minor
improvements can be seen in accuracy. In most cases
such minor increases in accuracy are not worth extra
training time, since accuracy is at this point already at
about 98 to 99 percent. Accuracy in this case directly
relates to correctly classified digits. However, Keras
reaches its final accuracy level a bit faster than the
Tensorflow network, which gives the possibility in
training even less while reaching the same quality.

8.1. Tensorflow
As shown in Table 1, Tensorflow reaches average
accuracy of 0.9880 or 98.80 percent by training the
network on the system’s CPU, which takes about 16
minutes of training time.
In contrast, using hardware acceleration from the
system’s GPU an average accuracy of 0.9895 was
reached. This took around 40.2 seconds and therefore
drastically improves efficiency. By shortening training
times more development may be done in the same
amount of time, which results in well-defined networks
being able to deliver better quality results. Which means
the GPU training recognizes digits with an equal
precision but does this approximately 25 times faster.

Table 1: Results for Training on CPU and GPU using
Tensorflow, all Time Measurements are noted in
Seconds.

8.2. Keras
As shown in Table 2 Keras reaches an average accuracy
of 0.9989 on the CPU, which takes around 510 seconds.
With this accuracy only about 1 in 1000 digits is
detected wrong. By training the network on the GPU
the same accuracy can be reached. The only difference
in this case is the reduced training time needed to 53
seconds on average. In all test runs Keras reached its
peak accuracy level a few epochs faster than
Tensorflow did, whereas overall training times on GPU
based training was longer.

8.3. Comparison of results
By looking at the results one can quickly see the
performance and scalability benefit of Tensorflow,
being about 31 percent faster when also using the
system’s available GPU to process data. By looking at
the CPU results at first glance there seems to be an error
in testing due to the longer training time needed by the
more performant framework Tensorflow. But this
difference in time is caused by not tuning every little
parameter to the best possible value, which represents

using the framework in a way an engineer would do
when development time is limited and there is no
chance to tweak and optimize every little setting.
Additionally the Tensorflow code consists mainly of
self-implementations, where by using Keras everything
for this prototype needed is already provided by the
framework environment. This approach also highlights
the difference in system modelling between both
frameworks. Tensorflow all task and groups need to be
modelled quite detailed, whereas Keras enforces a more
abstract modelling approach by only needing very
abstract process descriptions. Both representatives were
used as they would have been in a more complex and
bigger industrial environment, to keep objective
comparison possible.

Table 2: Results for Training on CPU and GPU using
Keras, all Time Measurements are noted in Seconds.

9. CONCLUSION
Although the test series showed performance benefits
when using Tensorflow in combination with hardware
accelerators, the choice of best framework depends on
the intended application and needed key features. If data
amounts and complexity stay within average, the high
abstraction level of Keras is far superior over the high
optimizing potential of Tensorflow. Giving the user the
opportunity to develop faster prototypes and test more
revisions improves the quality of the final network way
more than modelling every single function in detail.
If Keras is then also based on Tensorflow as backend
software, they form a great symbiosis where
weaknesses of both get covered by the other framework.
If an operation is missing in the Keras framework, it is
possible to add this functionality in highly optimized
Tensorflow native code and keep the rest of the
application clearly arranged in high-level code,
therefore having the benefit of fast development times
combined with great performance.
These features make Keras, and high-level frameworks
in general more suited for small to medium sized tasks,
where rapid-prototyping is essential and development
time advantages weigh more than pure performance and
customizability. Therefore, Keras is better in keeping
the costs down in development while still delivering
good quality results. Although expandability is not as
simple as with Tensorflow, all other key features of an
efficient AI framework for medium sized projects are
covered by the Keras framework, making it great for
embedded projects like facial recognition on
smartphones or interpreting telemetry data of robots and
machines.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

101

Large systems, like customer analyzing, however, suffer
performance hits caused by the abstraction level and
overhead of Keras where Tensorflow on the other hand
is the perfect choice. Due to highly specific and custom
modelled processes working with huge amounts of data,
Tensorflow is able to deliver the required performance.
However, to achieve these results substantial expertise
and AI know-how must already be present within the
development team. Based on the evaluated key criteria,
low-level frameworks like Tensorflow tend to be more
useful in scenarios where huge amounts of sensor or
image data need to be processed. One example of such
an extremely demanding application would be
autonomous driving of vehicles, where lots of sensors
need to be checked thousand times per second and
correct decisions need to be made near instantly. To
model such networks the fine granularity and the
optimization potential of Tensorflow and low-level
frameworks in general is essential in developing
efficient and powerful products and keep development
effort and therefore product costs as low as possible.

10. REFERENCES
Gershenson C.G., 2003. Artificial Neural Networks for

Beginners. Eprint: cs/0308031.

Schmidhuber J, 2015. Deep learning in neural networks:
An overview. Available from:
http://www.sciencedirect.com/science/article/pii/S
0893608014002135 [accessed 10.07.2018].

Lunze J, 2016. Künstliche Intelligenz für Ingenieure:
Methoden zur Lösung ingenieurtechnischer
Probleme mit Hilfe von Regeln, logischen
Formeln und Bayesnetzen. Available from:
https://books.google.at/books?id=NqBlCwAAQB
AJ [accessed 11.08.2018].

LeCun Y.L., Cortes C.C., Burges C.J.C.B., 1998. THE
MNIST DATABASE of handwritten digits.
Available from: http://yann.lecun.com/exdb/mnist/
[accessed 13.07.2019].

Abadi M.A., 2016.Tensorflow: A system for large-scale
machine learning. Available from:
http://arxiv.org/abs/1605.08695 [accessed
06.07.2018].

Keras Home, 2019. Keras Home. Available from:
https://keras.io/#keras-the-python-deep-learning-
library [accessed 02.08.2018].

Keras, 2019. Keras Why use Keras. Available from:
https://keras.io/#why-this-name-keras [accessed
02.08.2018].

Google Inc., 2019. Tensorflow Homepage. Available
from: https://www.tensorflow.org/ [accessed
11.07.2019].

LeCun Y.L., Bengio Y., 1995. The Handbook of Brain
Theory and Neural Networks.

Theano, 2019. Theano Homepage. Available from:
http://deeplearning.net/software/theano/ [accessed
11.07.2019].

Berkeley AI Research, 2019. Caffe webpage. Available
from: https://caffe.berkeleyvision.org/ [accessed
11.07.2019]

NumPy, 2019. NumPy Homepage. Available from:
https://www.numpy.org/ [accessed 11.07.2019]

Gazi Yalcin O., 2018. Image Classification in 10
Minutes with MNIST Dataset. Available from:
https://towardsdatascience.com/image-
classification-in-10-minutes-with-mnist-dataset-
54c35b77a38d [accessed 10.07.2019]

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

102

http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135
https://books.google.at/books?id=NqBlCwAAQBAJ
https://books.google.at/books?id=NqBlCwAAQBAJ
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1605.08695
https://keras.io/#keras-the-python-deep-learning-library
https://keras.io/#keras-the-python-deep-learning-library
https://keras.io/#why-this-name-keras
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://caffe.berkeleyvision.org/
https://www.numpy.org/
https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d
https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d
https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d

