
OPTICAL QUALITY CONTROL USING DEEP LEARNING

Franz Wiesinger(a), Daniel Klepatsch(b), Michael Bogner(c)

(a),(b),(c) University of Applied Sciences Upper Austria – Department of Embedded Systems Engineering
Softwarepark 11, A-4232 Hagenberg, Austria

(a)franz.wiesinger@fh-hagenberg.at, (b)daniel.klepatsch@fh-hagenberg.at, (c)michael.bogner@fh-hagenberg.at

ABSTRACT
Optical quality control is still often performed by people
and always carries the risk of human error. A modern
approach in order to solve this issue is the usage of
artificial intelligence to boost performance and
reliability.
This paper focuses on implementing a prototype for
optical quality control based on the YOLOv3 algorithm.
This is a state-of-the-art object detection system that
uses deep learning to detect different classes of objects
within an image.
Instead of different kinds of objects, the classes in this
prototype were different quality levels of a strawberry.
The dataset for this task was gathered by taking photos
and using images from the internet. The strawberries on
these images were labeled and fed to the YOLOv3
algorithm for training.
Despite the poor detection rate, the results showed that
it is generally possible to use such systems for detecting
different quality levels of products.

Keywords: optical quality control, artificial intelligence,
neural networks, deep learning, object detection

1. INTRODUCTION
Artificial intelligence (AI) has been around since the
1960s, but in the past, applications were limited by
computing power, algorithms, data or the money
invested in research. This has changed over the past
years. By utilizing Graphics Processing Units (GPUs)
and parallel computation, the available power made it
possible to solve problems of higher complexity. Due to
ongoing success, funding for AI rose which led to more
research and constantly improving algorithms.
Today, there is a lot of data that humans are not able to
process anymore. To make use of all the collected data,
artificial intelligence and machine learning is used to
analyze it, try to find patterns and make predictions,
based on the findings. All these systems are highly
specialized on one task and are far from being general
artificial intelligence. But they can outperform humans
in these tasks and therefore improve speed or accuracy
of certain processes.
A subfield of AI is machine vision, which enables
algorithms to see the world through images and other
data. This opens a new field for a broad range of

applications. For example autonomous driving, object
detection, text analysis as well as generative algorithms.
Optical quality control is a task that is performed by
humans at the conveyor belt but can be improved by
utilizing machine vision.
Implementing such a system is not a trivial task though.
It takes a professional approach and a lot of training
data to make reliable predictions. These automated
systems are meant to reduce costs and improve quality
assurance. Mistakes have negative effects on both of
these intended advantages. On the one hand, the
decision to eliminate a good product leads to higher
production costs. On the other hand, shipping a
damaged product can cause a bad reputation or even
endanger customers in case of unsafe electronics or
delivering food. Therefore, a well-conceived and correct
modeling of AI systems is required in order to
accomplish this task. Tests and simulations in industrial
environments will show if the intended results can be
achieved.
The objective of this paper was to use a state-of-the-art
object detection AI algorithm to not only identify
objects within an image, but also determine their optical
quality. A custom dataset of images of strawberries with
varying quality was used to train the prototype. These
quality levels are represented by different classes.

2. ARTIFICIAL INTELLIGENCE BASICS
In order to understand how the algorithm used in this
paper and AI algorithms in general work, the following
chapters will give a brief overview over some basic
building blocks for artificial intelligence.

2.1. Artificial Neuron
The most basic building block of artificial intelligence
algorithms is the artificial neuron. It is based on the
function of natural neurons in the human brain and is a
mathematical approximation that can also be
implemented on electronic systems.
A natural neuron consists of three main parts: dendrites,
the cell body and the axon. Signals received through
the dendrites are forwarded to the cell body, where their
processing takes place. After that, they are passed on to
the axon, which is the communication channel to other
neurons. It can split up into many branches to
communicate with more than one neuron. The point

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

119

DOI: https://doi.org/10.46354/i3m.2019.emss.019

mailto:michael.bogner@fh-hagenberg.at
mailto:daniel.klepatsch@fh-hagenberg.at
mailto:franz.wiesinger@fh-hagenberg.at

where the axon is connected to the next neurons
dendrite is called a synapse. It also processes the
incoming signal before forwarding it to the dendrite.
Artificial neurons are based on this simplified function
and represented as the following mathematical function:

y=f (∑i (x iw i)+b) (1)

The incoming signal through one dendrite is called xi.
Its first processing step is modeled by multiplying a
weight to the signal, which is called wi. The weighted
signal is then forwarded to the cell body where the final
processing takes places. All weighted signals are
summed up and a bias b is added. This is the argument
for the activation function f(x) (Hijazi S. et al. 2015).
The most common activation function is called the
Leaky Rectified Linear Unit function (Leaky ReLU)
and is depicted in Figure 1.

Figure 1: Leaky ReLU function.

The ability of an AI algorithm to learn things is given
by adjusting the weights of the incoming signals for
each neuron. Every training step calculates the error
between the predicted result and the actual result, the
ground truth, and the weights of each neuron is
modified according to its influence on the error.

2.2. Neural Networks
While neurons in the human brain are connected to
other neurons, artificial neural networks are structured
in layers, which contain neurons that are not connected
to other neurons in the same layer. Basically, there are
three types of layers: an input layer, hidden layers and
an output layer.
The input layer contains the information about the input
data. For example, every neuron could contain the
information of one pixel from an image. Usually there is
at least one hidden layer, which is used to increase the
capacity of the network and the ability to learn more
complex functions. In a fully-connected layer, the
output of every single neuron is connected to all neuron
inputs of the next layer. The output layer determines the
classification result (Hijazi S. et al. 2015).
A classification task, for example, would be if a neural
network has to determine, if there is a dog or a cat in an
image. The input layer would contain the pixels from
the image, the hidden layers are required to learn certain
characteristics of the images and the output layer would

contain two neurons, one for a cat and one for a dog.
The network then propagates the input data signals
through the network and outputs confidence values to
the output neurons. These values are interpreted as how
confident the network is whether there is a cat or a dog
in the image. This kind of network is depicted in Figure
2.

Figure 2: Fully-connected neural network.

2.2.1. Learning Procedure
A neural network is able to learn certain tasks by
adjusting the weights of all neurons. In every learning
step the output of the network and the ground truth are
compared by using a loss function. This function can
also take different aspects of the result into
consideration and weigh their error value differently.
That way, a network can be told what parts of the result
are more important to optimize than others.
The target of the learning procedure is to minimize the
result of the loss function. The most common way is to
use the gradient descent algorithm, which is used to find
a local minimum in a function by always going in the
direction of the steepest negative gradient. To apply this
method to a neural network an additional technique is
required: backpropagation.
This method allows the training algorithm to calculate
the impact of each neurons weights on the resulting loss
by using partial derivation which leads to the gradient.
These calculations are used to determine whether the
weights are increased or decreased. A parameter called
learning rate determines the size of the in- or decrease.
If the learning rate is too small, the algorithm might
take a very long time to get acceptable results. On the
other hand, if it is too large, the optimal result might not
be found due to too large changes in the weights
(Gschwend D. 2016).

2.3. Deep Learning
Deep learning is a subfield of artificial intelligence and
consists of networks with a more complex structure than
simple neural networks. One difference is that common
networks are rather shallow in terms of number of
layers. They often have less than ten layers. In
comparison, deep learning networks have up to 1000
layers which increases the capacity of the network as
well as the complexity of the task the network can learn.
Complex tasks like machine vision and natural language
recognition require such deep networks.
The fundamental concept of deep learning algorithms is
the idea that the input data have underlying
representations, which is composed of various levels of

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

120

abstraction. By varying the number of layers, different
levels of abstraction can be extracted from the training
material which may lead to better accuracy of the
network.

2.3.1. Convolutional Neural Network
One of the most important types of deep learning
networks is the convolutional neural network (CNN). It
is inspired by the way the visual cortex in the brain
works and is therefore very much suited for performing
image or video processing tasks.
Instead of fully-connected layers with single neurons,
the CNN relies heavily on convolutional layers. Each
convolutional layer consists of one or more filters,
called kernels. A very common example is the Sobel
operator which is used for horizontal or vertical edge
detection in images. The kernel and the input image are
convoluted which results in a two-dimensional feature
map. Every kernel in a convolutional layer produces
one feature map as output and has usually two or three
dimensions, depending on the input data of the current
layer. All outputs are stacked and result in a three-
dimensional output which can be used by the next layer.
Instead of changing the weights of each neuron, the
values in the kernels are altered during learning. This
results in a great reduction in memory usage.
Pooling layers are used to reduce the dimensions of
input data by taking a two-by-two or three-by-three
subsets and reduce it to one value by taking the
maximum (max-pooling) or the average value (average-
pooling).
Fully-connected layers are often used at the end of
CNNs where the feature maps are used to perform a
classification.
Dropout layers are similar to fully-connected layers and
consist of neurons. The only difference is, that during
each training step, a certain amount of neurons are
deactivated. This helps to prevent the problem of
overfitting, where the network memorized all the
training data and their solution but is unable to perform
well on unseen data (Gschwend D. 2016).

2.4. Types of Algorithms
When it comes to image processing with a neural
network there are basically four different tasks that can
be performed, which are depicted in Figure 3.

Figure 3: Different types of image processing
algorithms.

The classification task is used on images which contain
one object. The algorithm tells the user to which of the
predefined classes the depicted object belongs to.
Localization extends the classification task by
additionally drawing a frame around the object in the
image.
Object detection is similar to localization but there is a
variable number of objects in the image. The algorithm
has to localize the objects and perform a classification
on each one (Ng A. 2017).
Segmentation extends the object detection by not only
drawing a frame around the object but draw its
silhouette.
The prototype in this paper uses an algorithm for object
detection since segmentation is significantly more
complex but offers no major benefits.

2.5. Quality of Results
To determine the quality of the results, the total loss is
insufficient due to problems like overfitting. The loss
might be at a minimum but the algorithm does not
perform well on unseen data, it just memorized the
training data. Therefore, another measure of quality has
to be established. This is the mean average precision
(mAP). Before calculating the mAP, four result states
have to be defined:

 True Positive (TP)
 False Positive (FP)
 True Negative (TN)
 False Negative (FN)

True positive means, that there was a detection and it
was right. False positive means, that there was a
detection, but it was wrong. True negative means that
there was no detection and that this is right. False
negative means that there was no detection, but there
should have been. A detection is correct if the
intersection over union (IoU) between the predicted
object and the ground truth, depicted in Figure 4,
exceeds a defined threshold.

Figure 4: Intersection over union.

Now the precision and the recall of the algorithm can be
calculated:

precision=
TP

TP+FP
(2)

recall=
TP

TP+FN
(3)

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

121

By varying the confidence threshold for the object
classification, many precision and recall values can be
calculated. These are then plotted in the Precision-
Recall (PR) curve, where the recall is on the horizontal
axis and the precision is on the vertical axis. The
integral over that plot is somewhere between 0 and 1
and is called the average precision (AP). To get the
mAP, several APs have to be calculated with different
IoU thresholds.
The final mAP shows the actual quality of the results
the algorithm produces (Henderson P., Ferrari V. 2016).

3. PROTOTYPE
The goal of this paper is to show the possibilities of
using a CNN for image processing tasks like optical
quality control. Instead of building a custom network, a
well established algorithm called You Only Look Once
(YOLO) was used. In the original paper it performed
very well in comparison to other object detection
algorithms of that time in speed as well as accuracy. All
comparisons are based on the publicly available
“Common Objects in Context” (COCO) and Pascal
“Visual Object Classes” (VOC) image datasets
(Redmon J. et al. 2016).
The working environment on the hardware side was as
follows:

 Intel Core i5-8400 CPU
 16 GB RAM
 Gigabyte Nvidia GTX 980 GPU

The software environment consisted of a Windows 10,
64-Bit operating system and the Darknet neural network
framework, which was created by the inventor of the
YOLO algorithm, Joseph Redmon. Since the framework
is not compatible with Windows, an adjusted fork of it
was used. This was created by the GitHub-User
AlexeyAB. To accelerate the training phase, the Nvidia
CUDA and cuDNN techniques were used. These allow
the software to speed up all calculation tasks by
utilizing the GPU. For generating the image labeling, a
tool named Yolo_mark was used. This tool was also
created by AlexeyAB.
The actual task, the prototype is supposed to perform, is
the optical quality control of strawberries. The quality is
categorized in six different classes:

 unripe
 partially ripe
 ripe
 lightly damaged
 heavily damaged
 rotten

If strawberries are totally white, they count as unripe.
As soon as there is any red color on the fruit, it is
counted as partially ripe. Fruits are ripe, if they are all
red and no damage can be found. If there is any light
damage or any dry spot, it counts as lightly damaged.
Are the strawberries any more than lightly damaged,

they count as heavily damaged. As soon as the fruit has
any brown spot or signs of mold, it counts as rotten.

3.1. YOLO algorithm
The YOLO algorithm is faster than other systems
because it does not use complex pipelines. The
deformable parts model, for example, slides a window
over the image and performs a classification of the
current content of the window at each step. This has to
be done in several sizes all over the image. YOLO
avoids this by just looking at the image once via the
CNN and predicting the objects in it. This also has the
advantage, that the algorithm learns to include
contextual information, like the background, into the
decision making.
The concept of the whole algorithm is, that the input
image is split into a S-by-S grid. Each cell is
responsible for predicting B frames of objects, which
center points are in that cell. In addition to that, each
cell predicts C object classes. This means, that each cell
outputs two frames and one set of class probabilities. So
only one object class can exist in one cell. Before all
that, a 24 convolutional layers deep CNN performs the
feature extraction and uses several fully-connected
layers at the end to map the features to the actual values
that represent the object frames and classes. S, B and C
can be chosen by the user. A method called non-max
suppression is used in post processing to remove low-
confidence or overlapping object frames.
The loss function that is going to be optimized during
training is the commonly used least squares method but
with a few tweaks. First, the error for predicting frames
is weighted equally to the class probability. This was
changed by giving the error for frame prediction a
higher weight, so this becomes more important. Second,
errors in predicting the frame size had the same impact
on small and big frames. This was changed by
predicting the square root of the frame, so the same
offset has more impact on small frames than on larger
ones (Redmon J. et al. 2016).

3.1.1. YOLOv2
YOLO received two incremental improvements where
YOLOv2 was the first one. The accuracy was increased
by 15%, the reduction to 19 convolutional layers and
the removal of all fully-connected layers made it
significantly faster and a combination of classification
and detection training made it stronger.
A major change was the change from predicting the
whole object frame to predicting offsets to reference
frames, called anchor frames. These anchor frames are
predefined by the user and their proportions should
match the most frequent objects in the dataset. This
helps the algorithm while training. This can be
automated by a dimension clustering which uses a k-
means algorithm to find the optimal proportions.
Additionally, the training of the network was performed
with varying image scales. This is possible, since all
fully-connected layers were removed. Small scales
boost the speed of computation and high scales improve

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

122

the accuracy. The variation improves the overall
quality, since the network learns to predict objects on
several different scales (Redmon J. et al. 2017).

3.1.2. YOLOv3
The third iteration of the YOLO algorithm brings three
major changes. Instead of 19 convolutional layers,
YOLOv3 uses another base CNN with 53 convolutional
layers and 23 residual blocks. In theory, the deeper a
network gets, the harder it is to train the whole network.
In the worst case, a layer learns its identity function and
just forwards the input data instead of having a negative
impact on the result. Practical attempts show though,
that this negative impact does occur. To solve the
problem, residual blocks were introduced which routes
a bypass over some layers and sums up the last layers
output and the input data.

y=F (x)+x (4)

That way, the layers only have to learn to set their
outputs to zero instead of the identity function.
The second change addresses the class confidence
value. In YOLOv2 a softmax function was used to
normalize the confidence for all classes for one frame
and to pick the best result as detection. Now, a logistic
function is used on each confidence value. This makes it
possible to determine several classes per frame.
The third improvement is the frame prediction over
different scales. While its predecessors directly
predicted the object frames, this version predicts only
three of the nine frames at the same point. This is now
followed by a combination of convolutional layers,
residual blocks and an upscaling block, which leads the
higher resolution feature maps. After that, the next three
frames are predicted and this whole part is repeated
once more. This leads to an increase in accuracy,
especially on small objects (Redmon J. et al. 2018).

3.2. Dataset generation
The most important part about training an AI is the
dataset that is used. The best algorithm is only as good,
as the dataset it gets to study.
For this prototype, the whole dataset was acquired in
three steps. Custom photos were taken in the first two
steps and images from the internet where used during
the third step.

3.2.1. Custom photos
A pack of strawberries were picked up at the super
market and left alone for four full days. After that time,
the fruits had major flaws and also showed signs of
mold. The test setup for taking the images consisted of a
bright lamp, a white sheet of paper to get a uniform
background and a small turntable to spin the fruits
around and take images from different angles. 202
photos were taken with this indoor setup using a
Samsung Galaxy A5 (2017) smartphone camera. An
example image is depicted in Figure 5.

Figure 5: Photo from the first part of the dataset.

For the second step, the current strawberries were left
alone for another three days and then a pack with fresh,
partially unripe fruits was added. The setup was taken
outdoor because using the sunlight led to better quality
images. This time, 322 photos were taken by a Canon
EOS 600D single-lens reflex camera. An example is
depicted in Figure 6.

Figure 6: Photo from the second part of the dataset.

3.2.2. Additional image data
To increase the dataset, additional images from the
Google Images were taken. A tool called Google
Images Download from GitHub allows it, to
automatically download a specific number of images
based on a search phrase. For each of the following
phrases, 250 images were downloaded:

 new strawberries
 young strawberries
 strawberry
 strawberries
 bad strawberries
 old strawberries
 rotten strawberries
 damaged strawberries

These 2000 images were then numbered and sorted out.
Similar images, images with a too low resolution, bad
quality images and all non-real pictures (like cartoon
strawberries) were deleted. This led to a large dataset
with images of strawberries that would be labeled and
eventually fed into the algorithm for training.

3.2.3. Labeling
The labeling of the dataset was the most time
consuming part in creating the prototype. Every image
and every object had to be labeled by hand. This means
that a box, which is associated to a pre-defined class,

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

123

has to be drawn over every object in an image. The
algorithm then uses the labeling data (position, size and
class of the box) as ground truth for training the neural
network. It takes a training image, tries to predict its
objects and classes and compares the result to the
ground truth to improve the prediction.
As already mentioned, this task was accomplished by
using the Yolo_mark tool. At first, the user defines the
classes that the dataset contains. After that, the
configuration and a directory containing the training
images is passed to the tool. It then shows the user the
first image in that folder and a slider to change the
displayed image. With the number keys or a second
slider, the user can choose a class for which he wants to
draw a box on the image. By using the arrow keys, the
next or previous image can be displayed.
This way, ever strawberry in the training images was
labeled with the corresponding class and box. A
screenshot of the tool is depicted in Figure 7.

Figure 7: Screenshot of Yolo_mark.

3.2.4. Splitting the dataset
After the labeling was completed, the dataset had to be
split into three parts: training data, validation data and
testing data. The training data is used by the network to
learn how the objects look like and what shapes their
frames have. Validation data is used to test the networks
performance on unseen data. Based on the validation
results, the best model is picked. Test data is then used
on this model to determine the actual accuracy.
Validation and test data have to be totally independent
from the training data.
To split the dataset, a Python script was created. The
user passes the folder with all images and the
percentages for each part. It then randomly creates the
three parts where the images are split according to the
percentages. Afterwards, it checks if each part has
roughly the same percentage of each object class as the
other parts. If these percentages do not match within a
user-defined margin, it recreates the three parts with
new random picks. This is repeated until the object
percentages are within the margin or the user aborts the
script. The best split up to that point is then used.

3.3. Training approach
For training the network, an iterative process is used.
First, the network is trained by using built-in functions
of the Darknet framework. Several parameters like the
path to the folder with the training data and the number
of batches are passed to the program.

It then executes the training until it completes or the
user interrupts the training. Every 100 iterations, the
current state of the network is saved so that progress is
not lost in case of an error and that the most accurate
network can be chosen afterwards.
After the training the results are analyzed. If they are of
insufficient accuracy, alternations and optimizations
have to be made on the setup. This includes common
methods of optimization like increasing the dataset,
introduce additional dropout layers or artificially
increase the dataset by reusing old images and perform
modifications on them.
After the modification of the setup, the training is
restarted and the results are once more analyzed.

4. RESULTS
Due to timing limitations, only a total of ten training
iterations were executed. The changes and results of
every iteration are described in this chapter. Only
iterations one and nine are accompanied by figures,
because the results did not improve between these two.
Therefore, the figures of iteration one show what the
general results look like and the figure of iteration nine
shows the first improvement in accuracy.
For the first training iteration, the dataset was split in
90% training data and 10% validation data and a
standard YOLOv3 network with no modifications was
used. The training batch size was 64, which means that
the loss of 64 images is averaged and backpropagated.
In the following notation a training iteration
corresponds to the processing of one batch and a system
iteration corresponds to one prototype training iteration.
The training took place with pre-trained YOLOv3
weights, which should increase the accuracy of the
network. Instead of using a steady learning rate, the
default training algorithm also uses a burn-in learning
rate, which is depicted in Figure 8.

Figure 8: Burn-in learning rate of YOLOv3.

The total loss steadily decreased over the total of 30,000
training iterations, which is depicted in Figure 9 and
Figure 10. At first, the loss showed a big variation since
the network had no idea of what is depicted on the
training images. After about 100 iterations a downward
trend established whose slope steadily decreased
afterwards. After 30,000 iterations, no significant
decrease in loss could be determined and the training
was considered to be finished.

0 250 500 750 1000 1250 1500
0

0,00025

0,0005

0,00075

0,001

0,00125

Burn-In over 1000 iterations

Iteration

L
e

a
rn

in
g

 r
a

te

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

124

Figure 9: Total and average loss between 0 and 200
iterations.

Figure 10: Total loss and average loss over 30,000
iterations.

During the training, the framework stores the weights,
which represent the current state of the network every
100 training iterations. These states are then used to
calculate the mAP for every 100th iteration. Afterwards,
a curve can be drawn to compare the the accuracy of the
model using training data and test data. The results of
the first system iteration, depicted in Figure 11, show
that the mAP curves differ a lot between the training
data and the testing data. While the network memorized
most of the training data with a maximum mAP of 90%,
it had problems identifying objects on unseen images.
The highest mAP was about 45%. This means that the
network is heavily overfitting.

Figure 11: mAP comparison between training data and
test data of the first system iteration.

To prevent this problem, an artificial increase of the
dataset was performed for the second system iteration.
Following techniques were used:

 Image scaling between 75% and 125% per axis
 Moving the image between -40% and +40%

per axis
 Rotation between -8° and +8°
 Shearing with an angle between -8° and +8°
 Gaussian blur
 Contrast modification between -20% and

+30%

For each original image in the dataset, 20 images were
generated. Each image was created with a set of
randomized parameters from the above listed. In
addition to the artificial increase, the dataset was
extended by 100 images from the internet which did not
contain any strawberries.
Despite the modification, the mAP was roughly the
same as in the first system iteration.
The third system iteration introduced the dimension
clustering for the anchor frames, mentioned in the
YOLOv2 algorithm. Additionally, less pre-trained
layers were used to determine their effect. Only 61
instead of 74 were used.
After 10,000 training iterations, the results were worse
than in the second system iteration. The mAP over the
training data was only at 70% and the mAP over the
validation data was around 40%.
For the fourth system iteration, 74 pre-trained layer
weights were used again. Instead, the training on
multiple input scales were disabled and the batch size
was reduce from 64 to 32.
The results after 10,000 training iterations are the same
as the ones from the third iteration.
The Darknet framework features an internal random
data augmentation. Brightness and scaling
randomization was increased for the fifth system
iteration.
This resulted in even worse results, the validation mAP
was again around 40% but the training mAP did not
exceed 50%.
The sixth system iteration took a different approach. It
took the weight from the fifth iteration at 8,000 training
iterations. At that point, both the training and the
validation mAP were around 40%. Then, the first 80 of
the total 107 layers were frozen, so that the weights
were not updated. The remaining 27 layers were trained
like before. Again, the results did not improve, both
mAPs stopped increasing at about 45%.
System iteration seven used a compact YOLOv3 model,
the Tiny-YOLOv3, which consists of a total of 23
layers. The eighth system iteration halved the learning
rate. Both iterations did not show any improvement.
For the ninth iteration, a modification to the dataset was
used. The total of six different quality classes were
reduced to just three. Unripe and partly ripe were
merged as well as all three damaged classes.

0 25 50 75 100 125 150 175 200
0

200

400

600

800

1000

1200

1400

1600

Loss in iteration 1

Total loss Average loss

Iteration

L
o

ss

0 5000 10000 15000 20000 25000 30000
0

0,5

1

1,5

2

2,5

3

Loss in iteration 1

Average loss Total loss

Iteration

L
o

ss

0 5000 10000 15000 20000 25000 30000
0

10
20
30
40
50
60
70
80
90

100

Iteration 1

Training data Test data

Iteration

m
A

P
 (

%
)

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

125

For the first time, an increase in the mAP was achieved.
While the training mAP rose up to 95% after 20,000
training iterations, the validation mAP reached up to
65% at one point, depicted in Figure 12. This was an
increase of about 15% compared to all previous
iterations. An example for what an output looks like is
depicted in Figure 13.

Figure 12: mAP comparison between training data,
validation data and test data of the ninth system
iteration.

Figure 13: Example of a network prediction after the
ninth system iteration. Green frames mark a ripe
strawberries and orange frames mark lightly damaged
strawberries.

With the additional data augmentation in the tenth
system iteration, both mAPs dropped for 5% in
comparison to the ninth iteration.
To summarize all results, Figure 14 depicts the
comparison of the best validation mAPs of every system
iteration. It clearly shows that common methods of
optimization did not improve the accuracy but reduction
of object classes did.

Figure 14: Comparison of the best validation mAPs of
every system iteration.

5. CONCLUSION
Based on the ten system iterations performed with the
prototype, several conclusions can be made.
Generally, there is no universal optimization technique
that instantly boosts the accuracy of a network. It
always depends on the task, that should be achieved and
many other factors. Optimizing a neural network is
done by fine-tuning certain parameter to achieve the
best possible result under the given circumstances.
Since YOLOv3 is a reliable algorithm out of the box,
there was no need for restructuring the whole network
or adding different layers. The opposite can be said
about the Darknet framework, which was created by the
inventor of the YOLO algorithm. On the one hand, the
framework is open source and accessible for everyone.
On the other hand, it is lacking a documentation and
source code commentary. This makes it difficult to use
the framework. Especially if someone’s intention would
be to implement a custom network, since the
functionality of each available layer has to be looked up
in the source code.
The results in this paper show, that the dataset has the
most impact and has to be treated with a lot of care.
Most likely, inconsistent labeling of the dataset caused
rather bad results in terms of accuracy. It was not clear
enough defined, whether a strawberry is not, lightly or
heavily damaged.

Finally, it can be said that artificial intelligence is
generally able to distinct different object from each
other. As seen in many other demonstrations, machine
vision is becoming better and better at recognizing
objects. It comes down to the modelling of the system,
which enables a distinction of the same object in
different quality levels. This mainly includes the well-
conceived creation of the dataset used to train a
network. Tests under industrial production conditions
show the quality of the system and help the engineers to
incrementally improve the system. Also, a reduction to
two quality levels is often sufficient and can boost the
performance. Companies already collected huge
amounts of data about their products which they can use
to implement automated quality control systems and
profit from their advantages like reliability or cost
effectiveness.

REFERENCES
Hijazi S. et al., 2015. Using convolutional neural

networks for image recognition. Available from:
https://ip.cadence.com/uploads/901/cnn_wp-pdf
[accessed 8 April 2019]

Redmon J. et al., 2016. You only look once: Unified,
real-time object detection. Proceedings of the
IEEE conference on computer vision and pattern
recognition, 779-788. June 8-10, Boston,
Massachusetts.

0 4000 8000 12000 16000 20000 24000
0

10
20
30
40
50
60
70
80
90

100

Iteration 9

Training data Validation data Test data

Iteration

m
A

P
 (

%
)

1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100

Maximum validation mAP over system iterations

System iteration

m
a

x.
 m

A
P

 (
%

)

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

126

https://ip.cadence.com/uploads/901/cnn_wp-pdf

Redmon J. et al., 2017. YOLO9000: better, faster,
stronger. Proceedings of the IEEE conference on
computer vision and pattern recognition, 7263-
7271. July 22-25, Honolulu, Hawaii.

Redmon J. et al., 2018. YOLOv3: An Incremental
Improvement. Available from:
https://arxiv.org/pdf/1804.02767.pdf [accessed 8
April 2019]

Gschwend D., 2016. ZynqNet: An FPGA-Accelerated
Embedded Convolutional Neural Network. Master
Thesis. ETH Zürich.

Ng A., 2017. C4W3L01 Object Localization. Available
from: https://www.youtube.com/watch?
v=GSwYGkTfOKk [accessed 8 April 2019]

Henderson P., Ferrari V., 2016. End-to-end training of
object class detectors for mean average precision.
Proceedings of the Asian Conference on Computer
Vision, 198-213. November 21-23, Taipei,
Taiwan.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

127

https://www.youtube.com/watch?v=GSwYGkTfOKk
https://www.youtube.com/watch?v=GSwYGkTfOKk
https://arxiv.org/pdf/1804.02767.pdf

