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ABSTRACT
Optical quality control is still often performed by people
and always carries the risk of human error. A modern
approach  in  order  to  solve  this  issue  is  the  usage  of
artificial  intelligence  to  boost  performance  and
reliability.
This  paper  focuses  on  implementing  a  prototype  for
optical quality control based on the YOLOv3 algorithm.
This  is  a  state-of-the-art  object  detection  system that
uses deep learning to detect different classes of objects
within an image.
Instead of different kinds of objects, the classes in this
prototype were different quality levels of a strawberry.
The dataset for this task was gathered by taking photos
and using images from the internet. The strawberries on
these  images  were  labeled  and  fed  to  the  YOLOv3
algorithm for training.
Despite the poor detection rate, the results showed that
it is generally possible to use such systems for detecting
different quality levels of products.

Keywords: optical quality control, artificial intelligence,
neural networks, deep learning, object detection

1. INTRODUCTION
Artificial  intelligence  (AI)  has  been  around since  the
1960s,  but  in  the  past,  applications  were  limited  by
computing  power,  algorithms,  data  or  the  money
invested  in  research.  This  has  changed  over  the  past
years.  By utilizing Graphics  Processing Units (GPUs)
and parallel  computation, the available power made it
possible to solve problems of higher complexity. Due to
ongoing success, funding for AI rose which led to more
research and constantly improving algorithms.
Today, there is a lot of data that humans are not able to
process anymore. To make use of all the collected data,
artificial  intelligence  and  machine  learning is  used to
analyze  it,  try  to  find  patterns  and  make  predictions,
based  on  the  findings.  All  these  systems  are  highly
specialized on one task and are far from being general
artificial intelligence. But they can outperform humans
in these tasks and therefore improve speed or accuracy
of certain processes.
A  subfield  of  AI  is  machine  vision,  which  enables
algorithms to see the world through images and other
data.  This  opens  a  new  field  for  a  broad  range  of

applications.  For example  autonomous driving,  object
detection, text analysis as well as generative algorithms.
Optical  quality control  is  a  task that  is  performed by
humans at  the conveyor belt  but  can be improved by
utilizing machine vision.
Implementing such a system is not a trivial task though.
It  takes  a  professional  approach  and a  lot  of  training
data  to  make  reliable  predictions.  These  automated
systems are meant to reduce costs and improve quality
assurance.  Mistakes  have  negative  effects  on  both  of
these  intended  advantages.  On  the  one  hand,   the
decision  to  eliminate  a  good product  leads  to  higher
production  costs.  On  the  other  hand,  shipping  a
damaged product  can  cause  a bad reputation or  even
endanger  customers  in  case  of  unsafe  electronics  or
delivering food. Therefore, a well-conceived and correct
modeling  of  AI  systems  is  required  in  order  to
accomplish this task. Tests and simulations in industrial
environments will show if the intended results can be
achieved.
The objective of this paper was to use a state-of-the-art
object  detection  AI  algorithm  to  not  only  identify
objects within an image, but also determine their optical
quality. A custom dataset of images of strawberries with
varying quality was used to train the prototype. These
quality levels are represented by different classes.

2. ARTIFICIAL INTELLIGENCE BASICS
In order to understand how the algorithm used in this
paper and AI algorithms in general work, the following
chapters  will  give  a  brief  overview  over  some  basic
building blocks for artificial intelligence.

2.1. Artificial Neuron
The most basic building block of artificial intelligence
algorithms is  the  artificial  neuron.  It  is  based  on  the
function of natural neurons in the human brain and is a
mathematical  approximation  that  can  also  be
implemented on electronic systems.
A natural neuron consists of three main parts: dendrites,
the cell body and  the axon. Signals received through
the dendrites are forwarded to the cell body, where their
processing takes place. After that, they are passed on to
the axon, which is the communication channel to other
neurons.  It  can  split  up  into  many  branches  to
communicate  with  more  than  one  neuron.  The  point

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

119

DOI: https://doi.org/10.46354/i3m.2019.emss.019

mailto:michael.bogner@fh-hagenberg.at
mailto:daniel.klepatsch@fh-hagenberg.at
mailto:franz.wiesinger@fh-hagenberg.at


where  the  axon  is  connected  to  the  next  neurons
dendrite  is  called  a  synapse.  It  also  processes  the
incoming signal before forwarding it to the dendrite.
Artificial neurons are based on this simplified function
and represented as the following mathematical function:

y=f (∑i (x iw i )+b) (1)

The incoming signal through one dendrite is called  xi.
Its  first  processing  step  is  modeled  by  multiplying  a
weight to the signal, which is called  wi. The weighted
signal is then forwarded to the cell body where the final
processing  takes  places.  All  weighted  signals  are
summed up and a bias b is added. This is the argument
for the activation function  f(x) (Hijazi S. et al. 2015).
The  most  common  activation  function  is  called  the
Leaky  Rectified  Linear  Unit  function  (Leaky  ReLU)
and is depicted in Figure 1.

Figure 1: Leaky ReLU function.

The ability of an AI algorithm to learn things is given
by  adjusting  the  weights  of  the  incoming  signals  for
each  neuron.  Every  training  step  calculates  the  error
between the predicted result and the actual  result,  the
ground  truth,  and  the  weights  of  each  neuron  is
modified according to its influence on the error.

2.2. Neural Networks
While  neurons  in  the  human  brain  are  connected  to
other neurons, artificial neural networks are structured
in layers, which contain neurons that are not connected
to other neurons in the same layer. Basically, there are
three types of layers: an input layer, hidden layers and
an output layer.
The input layer contains the information about the input
data.  For  example,  every  neuron  could  contain  the
information of one pixel from an image. Usually there is
at least one hidden layer, which is used to increase the
capacity of  the network and the ability to learn more
complex  functions.  In  a  fully-connected  layer,  the
output of every single neuron is connected to all neuron
inputs of the next layer. The output layer determines the
classification result (Hijazi S. et al. 2015).
A classification task, for example, would be if a neural
network has to determine, if there is a dog or a cat in an
image. The input layer would contain the pixels from
the image, the hidden layers are required to learn certain
characteristics of the images and the output layer would

contain two neurons, one for a cat and one for a dog.
The  network  then  propagates  the  input  data  signals
through the network and outputs confidence values to
the output neurons. These values are interpreted as how
confident the network is whether there is a cat or a dog
in the image. This kind of network is depicted in Figure
2.

Figure 2: Fully-connected neural  network.

2.2.1. Learning Procedure
A  neural  network  is  able  to  learn  certain  tasks  by
adjusting the weights of all neurons. In every learning
step the output of the network and the ground truth are
compared by using a loss function. This function can
also  take  different  aspects  of  the  result  into
consideration  and  weigh  their  error  value  differently.
That way, a network can be told what parts of the result
are more important to optimize than others.
The target of the learning procedure is to minimize the
result of the loss function. The most common way is to
use the gradient descent algorithm, which is used to find
a local minimum in a function by always going in the
direction of the steepest negative gradient. To apply this
method to a neural network an additional technique is
required: backpropagation.
This method allows the training algorithm to calculate
the impact of each neurons weights on the resulting loss
by using partial derivation which leads to the gradient.
These  calculations  are  used to  determine  whether  the
weights are increased or decreased. A parameter called
learning rate determines the size of the in- or decrease.
If  the  learning  rate  is  too  small,  the  algorithm might
take a very long time to get acceptable results. On the
other hand, if it is too large, the optimal result might not
be  found  due  to  too  large  changes  in  the  weights
(Gschwend D. 2016).

2.3. Deep Learning
Deep learning is a subfield of artificial intelligence and
consists of networks with a more complex structure than
simple neural networks. One difference is that common
networks  are  rather  shallow  in  terms  of  number  of
layers.  They  often  have  less  than  ten  layers.  In
comparison,  deep  learning networks  have  up to  1000
layers  which increases  the capacity  of the network as
well as the complexity of the task the network can learn.
Complex tasks like machine vision and natural language
recognition require such deep networks.
The fundamental concept of deep learning  algorithms is
the  idea  that  the  input  data  have  underlying
representations, which is composed of various levels of
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abstraction. By varying the number of layers, different
levels of abstraction can be extracted from the training
material  which  may  lead  to  better  accuracy  of  the
network.

2.3.1. Convolutional Neural Network
One  of  the  most  important  types  of  deep  learning
networks is the convolutional neural network (CNN). It
is  inspired  by  the  way the  visual  cortex  in  the  brain
works and is therefore very much suited for performing
image or video processing tasks.
Instead  of  fully-connected  layers  with single neurons,
the CNN relies heavily on convolutional  layers.  Each
convolutional  layer  consists  of  one  or  more  filters,
called  kernels.  A very common example is  the Sobel
operator  which is used for horizontal  or vertical  edge
detection in images. The kernel and the input image are
convoluted which results in a two-dimensional feature
map.  Every  kernel  in  a  convolutional  layer  produces
one feature map as output and has usually two or three
dimensions, depending on the input data of the current
layer.  All  outputs  are  stacked  and  result  in  a  three-
dimensional output which can be used by the next layer.
Instead  of  changing  the  weights  of  each  neuron,  the
values in the kernels are altered during learning. This
results in a great reduction in memory usage.
Pooling  layers  are  used  to  reduce  the  dimensions  of
input  data  by  taking  a  two-by-two  or  three-by-three
subsets  and  reduce  it  to  one  value  by  taking  the
maximum (max-pooling) or the average value (average-
pooling).
Fully-connected  layers  are  often  used  at  the  end  of
CNNs where  the feature  maps are  used to  perform a
classification.
Dropout layers are similar to fully-connected layers and
consist of neurons. The only difference is, that during
each  training  step,  a  certain  amount  of  neurons  are
deactivated.  This  helps  to  prevent  the  problem  of
overfitting,  where  the  network  memorized  all  the
training data and their solution but is unable to perform
well on unseen data (Gschwend D. 2016).

2.4. Types of Algorithms
When  it  comes  to  image  processing  with  a  neural
network there are basically four different tasks that can
be performed, which are depicted in Figure 3.

Figure  3:   Different  types  of  image  processing
algorithms.

The classification task is used on images which contain
one object. The algorithm tells the user to which of the
predefined classes the depicted object belongs to.
Localization  extends  the  classification  task  by
additionally drawing a frame around the object  in the
image.
Object detection is similar to localization but there is a
variable number of objects in the image. The algorithm
has to localize the objects and perform a classification
on each one (Ng A. 2017).
Segmentation extends the object detection by not only
drawing  a  frame  around  the  object  but  draw  its
silhouette.
The prototype in this paper uses an algorithm for object
detection  since  segmentation  is  significantly  more
complex but offers no major benefits.

2.5. Quality of Results
To determine the quality of the results, the total loss is
insufficient  due to problems like overfitting. The loss
might  be  at  a  minimum  but  the  algorithm  does  not
perform  well  on  unseen  data,  it  just  memorized  the
training data. Therefore, another measure of quality has
to be established.  This  is  the mean average  precision
(mAP). Before calculating the mAP, four result states
have to be defined:

 True Positive (TP)
 False Positive (FP)
 True Negative (TN)
 False Negative (FN)

True positive means, that there was a detection and it
was  right.  False  positive  means,  that  there  was  a
detection, but it was wrong. True negative means that
there  was  no  detection  and  that  this  is  right.  False
negative means that  there was no detection, but there
should  have  been.  A  detection  is  correct  if  the
intersection  over  union  (IoU)  between  the  predicted
object  and  the  ground  truth,  depicted  in  Figure  4,
exceeds a defined threshold.

Figure 4: Intersection over union.

Now the precision and the recall of the algorithm can be
calculated:

precision=
TP

TP+FP
(2)

recall=
TP

TP+FN
(3)
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By  varying  the  confidence  threshold  for  the  object
classification, many precision and recall values can be
calculated.  These  are  then  plotted  in  the  Precision-
Recall (PR) curve, where the recall is on the horizontal
axis  and  the  precision  is  on  the  vertical  axis.  The
integral  over that plot is somewhere between 0 and 1
and  is  called  the  average  precision  (AP).  To get  the
mAP, several APs have to be calculated with different
IoU thresholds.
The final mAP shows the actual quality of the results
the algorithm produces (Henderson P., Ferrari V. 2016).

3. PROTOTYPE
The goal  of  this  paper is  to  show the possibilities  of
using  a  CNN for  image  processing  tasks  like  optical
quality control.  Instead of building a custom network, a
well established algorithm called You Only Look Once
(YOLO) was used. In the original paper it  performed
very  well  in  comparison  to  other  object  detection
algorithms of that time in speed as well as accuracy. All
comparisons  are  based  on  the  publicly  available
“Common  Objects  in  Context” (COCO)  and  Pascal
“Visual  Object  Classes” (VOC)  image  datasets
(Redmon J. et al. 2016).
The working environment on the hardware side was as
follows:

 Intel Core i5-8400 CPU
 16 GB RAM
 Gigabyte Nvidia GTX 980 GPU

The software environment consisted of a Windows 10,
64-Bit operating system and the Darknet neural network
framework,  which was created by the inventor of the
YOLO algorithm, Joseph Redmon. Since the framework
is not compatible with Windows, an adjusted fork of it
was  used.  This  was  created  by  the  GitHub-User
AlexeyAB. To accelerate the training phase, the Nvidia
CUDA and cuDNN techniques were used. These allow
the  software  to  speed  up  all  calculation  tasks  by
utilizing the GPU. For generating the image labeling, a
tool  named Yolo_mark  was  used.  This  tool  was  also
created by AlexeyAB.
The actual task, the prototype is supposed to perform, is
the optical quality control of strawberries. The quality is
categorized in six different classes:

 unripe
 partially ripe
 ripe
 lightly damaged
 heavily damaged
 rotten

If strawberries are totally white, they count as unripe.
As  soon  as  there  is  any  red  color  on  the  fruit,  it  is
counted as partially ripe. Fruits are ripe, if they are all
red and no damage can be found. If there is any light
damage or any dry spot, it counts as lightly damaged.
Are  the  strawberries  any  more  than  lightly  damaged,

they count as heavily damaged. As soon as the fruit has
any brown spot or signs of mold, it counts as rotten.

3.1. YOLO algorithm
The  YOLO  algorithm  is  faster  than  other  systems
because  it  does  not  use  complex  pipelines.  The
deformable parts model, for example, slides a window
over  the  image  and  performs  a  classification  of  the
current content of the window at each step. This has to
be  done  in  several  sizes  all  over  the  image.  YOLO
avoids this by just  looking at  the image once via the
CNN and predicting the objects in it. This also has the
advantage,  that  the  algorithm  learns  to  include
contextual  information,  like  the  background,  into  the
decision making.
The concept  of the whole algorithm is,  that  the input
image  is  split  into  a  S-by-S  grid.  Each  cell  is
responsible for  predicting B frames of  objects,  which
center points are in that cell. In addition to that, each
cell predicts C object classes. This means, that each cell
outputs two frames and one set of class probabilities. So
only one object class can exist in one cell. Before all
that, a 24 convolutional layers deep CNN performs the
feature  extraction  and  uses  several  fully-connected
layers at the end to map the features to the actual values
that represent the object frames and classes. S, B and C
can be chosen by the user.  A method called non-max
suppression is used in post processing to remove low-
confidence or overlapping object frames.
The loss function that is going to be optimized during
training is the commonly used least squares method but
with a few tweaks. First, the error for predicting frames
is weighted equally to the class probability. This was
changed  by  giving  the  error  for  frame  prediction  a
higher weight, so this becomes more important. Second,
errors in predicting the frame size had the same impact
on  small  and  big  frames.  This  was  changed  by
predicting  the  square  root  of  the  frame,  so  the  same
offset has more impact on small frames than on larger
ones (Redmon J. et al. 2016).

3.1.1. YOLOv2
YOLO received two incremental  improvements where
YOLOv2 was the first one.  The accuracy was increased
by 15%, the reduction to 19 convolutional  layers and
the  removal  of  all  fully-connected  layers  made  it
significantly faster and a combination of classification
and detection training made it stronger.
A  major  change  was  the  change  from predicting  the
whole  object  frame  to  predicting  offsets  to  reference
frames, called anchor frames. These anchor frames are
predefined  by  the  user  and  their  proportions  should
match  the  most  frequent  objects  in  the  dataset.  This
helps  the  algorithm  while  training.  This  can  be
automated by a dimension clustering which uses  a k-
means algorithm to find the optimal proportions.
Additionally, the training of the network was performed
with varying image scales.  This  is  possible,  since  all
fully-connected  layers  were  removed.  Small  scales
boost the speed of computation and high scales improve
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the  accuracy.  The  variation  improves  the  overall
quality, since the network learns to predict objects on
several different scales (Redmon J. et al. 2017).

3.1.2. YOLOv3
The third iteration of the YOLO algorithm brings three
major  changes.  Instead  of  19  convolutional  layers,
YOLOv3 uses another base CNN with 53 convolutional
layers  and 23 residual blocks.  In theory,  the deeper a
network gets, the harder it is to train the whole network.
In the worst case, a layer learns its identity function and
just forwards the input data instead of having a negative
impact  on the  result.  Practical  attempts  show though,
that  this  negative  impact  does  occur.  To  solve  the
problem, residual blocks were introduced which routes
a bypass over some layers and sums up the last layers
output and the input data.

y=F ( x )+x (4)

That  way,  the  layers  only  have  to  learn  to  set  their
outputs to zero instead of the identity function.
The  second  change  addresses  the  class  confidence
value.  In  YOLOv2  a  softmax  function  was  used  to
normalize the confidence for all classes for one frame
and to pick the best result as detection. Now, a logistic
function is used on each confidence value. This makes it
possible to determine several classes per frame.
The  third  improvement  is  the  frame  prediction  over
different  scales.  While  its  predecessors  directly
predicted the object  frames,  this version predicts only
three of the nine frames at the same point. This is now
followed  by  a  combination  of  convolutional  layers,
residual blocks and an upscaling block, which leads the
higher resolution feature maps. After that, the next three
frames  are  predicted  and  this  whole  part  is  repeated
once  more.  This  leads  to  an  increase  in  accuracy,
especially on small objects (Redmon J. et al. 2018).

3.2. Dataset generation
The  most  important  part  about  training  an  AI  is  the
dataset that is used. The best algorithm is only as good,
as the dataset it gets to study.
For this prototype,  the whole dataset  was acquired  in
three steps. Custom photos were taken in the first two
steps and images from the internet where used during
the third step.

3.2.1. Custom photos
A  pack  of  strawberries  were  picked  up  at  the  super
market and left alone for four full days. After that time,
the  fruits  had  major  flaws  and  also  showed  signs  of
mold. The test setup for taking the images consisted of a
bright  lamp,  a  white  sheet  of  paper  to  get  a  uniform
background  and  a  small  turntable  to  spin  the  fruits
around  and  take  images  from  different  angles.  202
photos  were  taken  with  this  indoor  setup  using  a
Samsung  Galaxy  A5  (2017)  smartphone  camera.  An
example image is depicted in Figure 5.

Figure 5: Photo from the first part of the dataset.

For the second step, the current strawberries were left
alone for another three days and then a pack with fresh,
partially unripe fruits was added. The setup was taken
outdoor because using the sunlight led to better quality
images. This time, 322 photos were taken by a Canon
EOS 600D single-lens  reflex  camera.  An  example  is
depicted in Figure 6.

Figure 6: Photo from the second part of the dataset.

3.2.2. Additional image data
To  increase  the  dataset,  additional  images  from  the
Google  Images  were  taken.  A  tool  called  Google
Images  Download  from  GitHub  allows  it,  to
automatically  download  a  specific  number  of  images
based  on  a  search  phrase.  For  each  of  the  following
phrases, 250 images were downloaded:

 new strawberries
 young strawberries
 strawberry
 strawberries
 bad strawberries
 old strawberries
 rotten strawberries
 damaged strawberries

These 2000 images were then numbered and sorted out.
Similar images, images with a too low resolution, bad
quality  images  and  all  non-real  pictures  (like  cartoon
strawberries) were deleted. This led to a large dataset
with images of strawberries that would be labeled and
eventually fed into the algorithm for training.

3.2.3. Labeling
The  labeling  of  the  dataset  was  the  most  time
consuming part in creating the prototype. Every image
and every object had to be labeled by hand. This means
that a box, which is associated to a pre-defined class,
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has  to  be  drawn over  every  object  in  an  image.  The
algorithm then uses the labeling data (position, size and
class of the box) as ground truth for training the neural
network.  It  takes  a  training image,  tries  to predict  its
objects  and  classes  and  compares  the  result  to  the
ground truth to improve the prediction. 
As already mentioned, this task was accomplished by
using the Yolo_mark tool. At first, the user defines the
classes  that  the  dataset  contains.  After  that,  the
configuration  and  a  directory  containing  the  training
images is passed to the tool. It then shows the user the
first  image  in  that  folder  and  a  slider  to  change  the
displayed  image.  With  the  number  keys  or  a  second
slider, the user can choose a class for which he wants to
draw a box on the image. By using the arrow keys, the
next or previous image can be displayed.
This way, ever strawberry in the training images was
labeled  with  the  corresponding  class  and  box.  A
screenshot of the tool is depicted in Figure 7.

Figure 7: Screenshot of Yolo_mark.

3.2.4. Splitting the dataset
After the labeling was completed, the dataset had to be
split into three parts: training data, validation data and
testing data. The training data is used by the network to
learn how the objects look like and what shapes their
frames have. Validation data is used to test the networks
performance  on unseen data.  Based on the  validation
results, the best model is picked.  Test data is then used
on  this  model  to  determine  the  actual  accuracy.
Validation and test data have to be totally independent
from the training data.
To split the dataset,  a Python script  was created.  The
user  passes  the  folder  with  all  images  and  the
percentages for each part. It then randomly creates the
three parts where the images are split according to the
percentages.  Afterwards,  it  checks  if  each  part  has
roughly the same percentage of each object class as the
other parts. If these percentages do not match within a
user-defined  margin,  it  recreates  the  three  parts  with
new  random  picks.  This  is  repeated  until  the  object
percentages are within the margin or the user aborts the
script. The best split up to that point is then used.

3.3. Training approach
For training the network,  an iterative process  is used.
First, the network is trained by using built-in functions
of the Darknet framework. Several parameters like the
path to the folder with the training data and the number
of batches are passed to the program.

It  then executes  the training until  it  completes  or  the
user  interrupts  the  training.  Every  100  iterations,  the
current state of the network is saved so that progress is
not lost in case of an error and that the most accurate
network can be chosen afterwards.
After the training the results are analyzed. If they are of
insufficient  accuracy,  alternations  and  optimizations
have to be made on the setup. This includes common
methods  of  optimization  like  increasing  the  dataset,
introduce  additional  dropout  layers  or  artificially
increase the dataset by reusing old images and perform
modifications on them.
After  the  modification  of  the  setup,  the  training  is
restarted and the results are once more analyzed.

4. RESULTS
Due to timing limitations,  only a total  of ten training
iterations  were  executed.  The  changes  and  results  of
every  iteration  are  described  in  this  chapter.  Only
iterations  one  and  nine  are  accompanied  by  figures,
because the results did not improve between these two.
Therefore,  the figures  of iteration  one show what  the
general results look like and the figure of iteration nine
shows the first improvement in accuracy.
For the first training iteration, the dataset was split  in
90%  training  data  and  10%  validation  data  and  a
standard YOLOv3 network with no modifications was
used. The training batch size was 64, which means that
the loss of 64 images is averaged and backpropagated.
In  the  following  notation  a  training  iteration
corresponds to the processing of one batch and a system
iteration corresponds to one prototype training iteration.
The  training  took  place  with  pre-trained  YOLOv3
weights,  which  should  increase  the  accuracy  of  the
network.  Instead of  using a steady learning rate,  the
default training algorithm also uses a burn-in learning
rate, which is depicted in Figure 8.

Figure 8: Burn-in learning rate of YOLOv3.

The total loss steadily decreased over the total of 30,000
training  iterations,  which  is  depicted  in  Figure  9  and
Figure 10. At first, the loss showed a big variation since
the  network  had  no  idea  of  what  is  depicted  on  the
training images. After about 100 iterations a downward
trend  established  whose  slope  steadily  decreased
afterwards.  After  30,000  iterations,  no  significant
decrease in loss could be determined and the training
was considered to be finished.
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Figure  9:  Total  and  average  loss  between  0  and  200
iterations.

Figure  10:  Total  loss  and  average  loss  over  30,000
iterations.

During the training, the framework stores the weights,
which represent the current state of the network every
100  training  iterations.  These  states  are  then  used  to
calculate the mAP for every 100th iteration. Afterwards,
a curve can be drawn to compare the the accuracy of the
model using training data and test data. The results of
the first  system iteration, depicted in Figure 11, show
that the mAP curves differ  a lot  between the training
data and the testing data. While the network memorized
most of the training data with a maximum mAP of 90%,
it had problems identifying objects on unseen images.
The highest mAP was about 45%. This means that the
network is heavily overfitting.

Figure 11: mAP comparison between training data and
test data of the first system iteration.

To prevent  this  problem,  an  artificial  increase  of  the
dataset was performed for the second system iteration.
Following techniques were used:

 Image scaling between 75% and 125% per axis
 Moving the  image between  -40% and  +40%

per axis
 Rotation between -8° and +8°
 Shearing with an angle between -8° and +8°
 Gaussian blur
 Contrast  modification  between  -20%  and

+30%

For each original image in the dataset, 20 images were
generated.  Each  image  was  created  with  a  set  of
randomized  parameters  from  the  above  listed.  In
addition  to  the  artificial  increase,  the  dataset  was
extended by 100 images from the internet which did not
contain any strawberries.
Despite  the  modification,  the  mAP  was  roughly  the
same as in the first system iteration.
The  third  system  iteration  introduced  the  dimension
clustering  for  the  anchor  frames,  mentioned  in  the
YOLOv2  algorithm.  Additionally,  less  pre-trained
layers  were  used  to  determine  their  effect.  Only  61
instead of 74 were used.
After 10,000 training iterations, the results were worse
than in the second system iteration. The mAP over the
training data was only at  70% and the mAP over the
validation data was around 40%.
For  the  fourth  system  iteration,  74  pre-trained  layer
weights  were  used  again.  Instead,  the  training  on
multiple input scales were disabled and the batch size
was reduce from 64 to 32.
The results after 10,000 training iterations are the same
as the ones from the third iteration.
The  Darknet  framework  features  an  internal  random
data  augmentation.  Brightness  and  scaling
randomization  was  increased  for  the  fifth  system
iteration.
This resulted in even worse results, the validation mAP
was  again around 40% but  the training mAP did not
exceed 50%.
The sixth system iteration took a different approach. It
took the weight from the fifth iteration at 8,000 training
iterations.  At  that  point,  both  the  training  and  the
validation mAP were around 40%. Then, the first 80 of
the  total  107  layers  were  frozen,  so  that  the  weights
were not updated. The remaining 27 layers were trained
like  before.  Again,  the  results  did  not  improve,  both
mAPs stopped increasing at about 45%.
System iteration seven used a compact YOLOv3 model,
the  Tiny-YOLOv3,  which  consists  of  a  total  of  23
layers. The eighth system iteration halved the learning
rate. Both iterations did not show any improvement.
For the ninth iteration, a modification to the dataset was
used.  The  total  of  six  different  quality  classes  were
reduced  to  just  three.  Unripe  and  partly  ripe  were
merged as well as all three damaged classes.
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For the first time, an increase in the mAP was achieved.
While the training mAP rose up to 95% after  20,000
training  iterations,  the  validation  mAP reached  up  to
65% at one point, depicted in Figure 12. This was an
increase  of  about  15%  compared  to  all  previous
iterations. An example for what an output looks like is
depicted in Figure 13.

Figure  12:  mAP  comparison  between  training  data,
validation  data  and  test  data  of  the  ninth  system
iteration.

Figure 13: Example of a network prediction after  the
ninth  system  iteration.  Green  frames  mark  a  ripe
strawberries  and orange frames mark lightly damaged
strawberries.

With  the  additional  data  augmentation  in  the  tenth
system  iteration,  both  mAPs  dropped  for  5%  in
comparison to the ninth iteration.
To  summarize  all  results,  Figure  14  depicts  the
comparison of the best validation mAPs of every system
iteration.  It  clearly  shows  that  common  methods  of
optimization did not improve the accuracy but reduction
of object classes did.

Figure 14: Comparison of the best validation mAPs of
every system iteration.

5. CONCLUSION
Based on the ten system iterations performed with the
prototype, several conclusions can be made.
Generally, there is no universal optimization technique
that  instantly  boosts  the  accuracy  of  a  network.  It
always depends on the task, that should be achieved and
many  other  factors.  Optimizing  a  neural  network  is
done  by  fine-tuning  certain  parameter  to  achieve  the
best possible result under the given circumstances.
Since YOLOv3 is a reliable algorithm out of the box,
there was no need for restructuring the whole network
or  adding  different  layers.  The  opposite  can  be  said
about the Darknet framework, which was created by the
inventor of the YOLO algorithm. On the one hand, the
framework is open source and accessible for everyone.
On the other  hand, it  is  lacking a documentation and
source code commentary. This makes it difficult to use
the framework. Especially if someone’s intention would
be  to  implement  a  custom  network,  since  the
functionality of each available layer has to be looked up
in the source code.
The results in this paper show, that the dataset has the
most impact and has to be treated with a lot of care.
Most likely, inconsistent labeling of the dataset caused
rather bad results in terms of accuracy. It was not clear
enough defined, whether a strawberry is not, lightly or
heavily damaged.

Finally,  it  can  be  said  that  artificial  intelligence  is
generally  able  to  distinct  different  object  from  each
other. As seen in many other demonstrations, machine
vision  is  becoming  better  and  better  at  recognizing
objects. It comes down to the modelling of the system,
which  enables  a  distinction  of  the  same  object  in
different quality levels. This mainly includes the well-
conceived  creation  of  the  dataset  used  to  train  a
network.  Tests  under  industrial  production  conditions
show the quality of the system and help the engineers to
incrementally improve the system. Also, a reduction to
two quality levels is often sufficient and can boost the
performance.  Companies  already  collected  huge
amounts of data about their products which they can use
to  implement  automated  quality  control  systems  and
profit  from  their  advantages  like  reliability  or  cost
effectiveness. 
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