Complex network analysis: Mexico´s City metro system

  • Olivia Sashiko Shirai Reyna  ,
  • Idalia Flores de la Mota  
  • a,b Posgrado en Ingeniería de Sistemas- Facultad de Ingeniería Edificio Bernardo Quintana 3er, Piso, Departamento de Sistemas, UNAM, Cd. Universitaria, Del. Coyoacán, C.P. 04510, México C.D.M.X
Cite as
Shirai Reyna O. S., Flores de la Mota I. (2019). Complex network analysis: Mexico's City metro system. Proceedings of the 31st European Modeling & Simulation Symposium (EMSS 2019), pp. 145-153. DOI: https://doi.org/10.46354/i3m.2019.emss.022.

Abstract

The metro system from Mexico City has previously been analyzed, but only by parts, specific case studies to some stations (transfer, transit or terminals) or metro lines (individually) and not to the entire system as such. This study is important since it will give us information about the system that is not yet known, it will help us to correctly identify risks to minimize them, as well as delays in the lines, make improvements to the system, have an adequate planning, establish different policies to improve and satisfy the system needs. Tools such as simulation will be used to create scenarios and search for alternatives for improvement in the system, as well as, where appropriate, other tools such as optimization will be used. This paper uses different techniques such as Complex Networks Methodology, Statistics, Simulation and Risk Analysis.

References

  1. Banks J., Handbook of Simulation. Principles, Methodology, Advances, Applications, and Practice, John Wiley & Sons, Inc. pp. 15 - 18. (1998).
  2. Caldarelli G., Catanzaro M., Networks: A Very Short Introduction, Oxford University Press, Oxford. (2012). Camille Roth, S. M. Evolution of subway networks. Physics-soc, 1-11. (2012).
  3. Cats O., J. E. Beyond a complete failure: the impact of partial capacity degradation on. Transportmetrica B: Transport Dynamics, 77-96.(2018).
  4. Cats, O. Topological evolution of a metropolitan rail transport network: The case of Stockholm. Journal of Transport Geography, 62, 172-183. (2017).
  5. Chopra, S., Dillon, T., Billec, M., & Khanna, V. A network-based framework for assessing infrastructure resilience: a case study of the London metro system. Journal of the Royal Society Interface, 1-11. Retrieved from http://rsif.royalsocietypublishing.org/content/13/118/20160113 (2016).
  6. Dalgaard P., Introductory Statistics with R. Springer. (2008). Deng, J., Li, Q., Lu, Y., & Yuan, Y. Topology Vulnerability Analysis and Measure of Urban Metro Network: The case of Nanjing. Journal of Networks, 8(6), 1350-1356. (2013).
  7. Derrible S., Network Centrality of Metro Systems, PLoS ONE 7(7): e40575. doi:10.1371/journal.pone.0040575, (2012).
  8. Derrible, S., & Kennedy, C. Network Analysis of World Subway Systems Using Updated Graph 
    Theory. Transportation Research Record: Journal of the Transportation Research Board, 3(2112), 17-25 (2009).
  9. Derrible, S., & Kennedy, C. Characterizing metro networks: state, form and structure. Transportation, 37(2), 275-297. (2010).
  10. Dillarza-Andrade, Y, Medición del tiempo de abordaje de los pasajeros del STC: estación Pantitlán, Line 1. Tesis UNAM. (2017).
  11. Ding, R., Ujang, N., Hamid, H., & Wu, J. Complex Network Theory Applied to the Growth of Kuala Lumpur’s Public Urban Rail Transit Network. PLOS one, 10(10), 1-22. (2015).
  12. Drozdowski M., Kowalski D., Mizgajski J., Mokwa D., Pawlak G., Mind the gap: a heuristic study of subway tours, J Heuristics 20:561–587, (2014).
  13. Figueras J., Modelos de Simulación usando simio y redes de Petri, Universidad Nacional Autónoma de México. pág. 2. (2013).
  14. Flores-De La Mota, I., & Huerta-Barrientos, A. Simulation-Optimization of the Mexico City Public Transportation Network: A Complex Network Analysis Framework. En M. Mujica-Mota, & I. Floresde-la-Mota, Applied Simulation and Optimization (Vol. 2, pp. 43-79). Ciudad de México: Springer. (2017).
  15. Flores-De La Mota, I., Hernández-González, S. Applying complex network theory to the analysis of metro networks (1969 – 2018). Print, Artículo en revisión. (2018).
  16. Fortin P., Morency C., Trépanier M., Innovative GTFS Data Application for Transit Network Analysis Using a Graph-Oriented Method, Journal of Public Transportation, Vol. 19, No. 4, (2016).
  17. Gallotti R., Porter M. A., Barthelemy M., Lost in transportation: Information measures and cognitive limits in multilayer navigation. Science Advances 2, e1500445, (2016).
  18. Gattusso, D., & Miriello, E. Compared Analysis of Metro Networks Supported by Graph Theory. Networks ans Spatial Economics, 5(4), 395-414. (2005).
  19. Guerra E., Mexico City´s suburban land use and transit connection: The effects of the Line B Metro expansion, Transport Policy 32, 105–114, (2014).
  20. Háznagy A., Fi I., London A., Németh T., Complex network analysis of public transportation networks: a comprehensive study, Models and Technologies for Intelligent Transportation Systems (MT-ITS) 3-5. Junio 2015. Budapest, Hungary, (2015).
  21. Kim H., Song Y., Examining Accessibility and Reliability in the Evolution of Subway Systems, Journal of Public Transportation, Vol. 18, No. 3, (2015).
  22. Lara, F., Teoría, métodos y modelos de la complejidad social I. Seminario de Investigación, CCADET.
  23. Latora V., Marchiori M., Is the Boston subway a small-world network?, Physica A 314, 109 – 113, (2002).
  24. Leskovec, J., Kleinberg, J., & Faloutsos, C. Graph Evolution: Densification and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data, 1(1), 1-41. (2007).
  25. Louf R., Roth C., Barthelemy M., Scaling in Transportation Networks, PLoS ONE 9(7): e102007 (2014).
  26. Mood A., Introduction to the Theory of Statistics. McGraw-Hill. (1974).
  27. Negroe, G., Papel de la planeación en el proceso de conducción, Universidad Nacional Autónoma de México. pp 10. (1980).
  28. Newman M.E.J., Networks: An Introduction, Oxford University Press, Oxford. (2010).
  29. Purdy, G., ISO 31000:2009 Setting a New Standard for Risk Management, Society for Risk Analysis, Vol. 30. No. 6, págs. 881-886. (2010).
  30. Shiau T-A., Lee C-H., Measuring Network-Based Public Transit Performance Using Fuzzy Measures and Fuzzy Integrals, Sustainability 9, 695, (2017).
  31. Stoilova S., Stoev V., An Application of the Graph Theory Which Examines the Metro Networks, Transport Problems Volume 10, Issue 2, (2015).
  32. Sun L., Huang Y., Chen Y., Yaob L., Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China. Transportation Research Part A 108, 12–24, (2018).
  33. Swanepoel E., Pretorius L., A Structured Approach to Risk Identification for Projects in a Research Environment, Proceedings of PICMET '15: Management of the Technology Age, (2015).
  34. Tarride M., Complexity and complex systems, Historia, Ciencias, Salud. Manguinbos, II (1), pp 46-66. (1995).
  35. Vera-Morales, A. E., Un Modelo de simulación para mejorar los mecanismos de evacuación en el STC Metro. Tesis UNAM. (2017).
  36. Wang X., Ko Y., Derrible S., Ahmad S-N., Kooji R. E., Quantifying the robustness of Metro Networks, CoRR, abs/1505.06664, (2015).
  37. Wang X., Ko Y., Derrible S., Ahmad S-N., Pino W. J. A., Kooji R. E., Multi-criteria robustness analysis of metro networks, Physica A 474,19–31, (2017).
  38. Wu X., Dong H., Kong Tse C., Ho W. H. I., Lau C. M. F., A Network Analysis of World’s Metro Systems, 2016 International Symposium on Nonlinear Theory and Its Applications, NOLTA 2016, Yugawara, Japan, 27-30 Noviembre, (2016).
  39. Wu X., Dong H., Kong Tse C., Ho W. H. I., Lau C. M. F., Analysis of metro network performance from a complex network perspective, Physica A 492, 553–563, (2018).
  40. Zhang H., Structural Analysis of Bus Networks Using Indicators of Graph Theory and Complex Network Theory, The Open Civil Engineering Journal, 11, 92-100, (2017).