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ABSTRACT 
The metro system from Mexico City has previously 

been analyzed, but only by parts, specific case studies to 
some stations (transfer, transit or terminals) or metro 
lines (individually) and not to the entire system as such. 
This study is important since it will give us information 
about the system that is not yet known, it will help us to 
correctly identify risks to minimize them, as well as 
delays in the lines, make improvements to the system, 
have an adequate planning, establish different policies 
to improve and satisfy the system needs. Tools such as 
simulation will be used to create scenarios and search 
for alternatives for improvement in the system, as well 
as, where appropriate, other tools such as optimization 
will be used. This paper uses different techniques such 
as Complex Networks Methodology, Statistics, 
Simulation and Risk Analysis. 
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1. INTRODUCTION
Currently the Metro System has 12 lines which are 
distributed within Mexico City and part of the State of 
Mexico. 

Figure 1 México City Metro System 

The Metro of Mexico City has a total of 384 convoys, 
of which 285 are in operation and 99 out of service for 
the following reasons: 33 for lack of spare parts, 20 for 
being in reserve, 17 for maintenance, 15 by general 
review, 7 by revision of breakdowns, 5 by work of 
modernization, and one more by special works and 
another by reprofiling of wheels. 

2. PROBLEM
During a period of 14 months, from January 2017 to 
February 2018, the Metro system of México City 
presented 28,400 breakdowns during its operation. That 
is, an average of 2 366 failures per month or 77 per day, 
according to data obtained via transparency request. 

The main problems that occurred in that time lapse were 
braking traction with 5 980; in the door system with 4 
169; the automatic piloting with 4 043; the mechanical 
equipment with 3 144; and the generation of energy with 
2 554. 

While the lines that presented the highest number of 
breakdowns in all 2017 and in the first two months of 
2018 were the line 3 that goes from Indios Verdes to 
Universidad with 4 459; line 1 that runs from 
Observatorio to Pantitlán with 3 631; the line A that 
travels from Pantitlán to La Paz with 3 394; followed by 
line 7 that goes from El Rosario to Barranca del Muerto 
with 2 985; and line 5 that goes from Politécnico to 
Pantitlán with 2 862 failures. 

The subway system has its main problems due to factors 
such as the elements´wear of the gear change, which has 
been caused by natural wear, cracks or fractures in lines 
with greater age, as well as lack of lubrication in rails 
and settlements differentials caused by the settlements 
of the subsoil of the city. 

While the electronic installations have normal 
deterioration in the equipment, which affects the 
Automation and Control systems, then they must 
operate in safety conditions, over electrical installations. 
In lines 8 and A were delays due to lack of power of that 
type due to the failure of a general switch that occurred 
due to the voltage variation of the CFE (Comisión 
Federal de Electricidad). 
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During 2017, the impairment rate in hours due to service 
faults on all Metro lines was 17.6, while the actual 
service was 7,454.3, with a service percentage of 99.76, 
according to the information presented by the Metro. 

In January and February of 2018, the hours without 
service reached 6.8, while the active hours were 1 205. 
The striking thing about the numbers is that in just two 
months they have reached almost a third of the total 
hours of failure that were recorded in all last year, which 
indicates that the problem is going up. 

Only last February there were 4 hours total losses due to 
faults that have occurred in the service of all Metro lines, 
which exceeds the highest months of 2017 that were 
June and December with 3.2 and 3.1, respectively. 

The Metro reported different problems: Technical, 
Operational, Social and Financial problems. The 
technical problems are those related to the operation of 
the network such as the control system, braking system, 
door opening system, capacity of the wagons, lack of 
spare parts, among others, most of these problems are 
due to lack of maintenance. Other problems are found in 
the operation of the system, which are those related to 
the rules and policies with which the Metro operates, 
such as the number of trains operating per schedule, 
action policies within the platforms, such as safety 
measures, evacuation, action measures in case of 
mishaps such as earthquakes, fires, terrorist attacks, 
among others. Another type of problem is the social 
problems, which are associated with people such as the 
flow of passengers, crowds, violence inside and outside 
the wagons, street vendors, among others. Finally, we 
find the financial or budgetary problems, since the 
Metro does not have enough money to maintain, buy 
spare parts of trains, rehabilitation of trains that are out 
of circulation or put in circulation new trains. 

Therefore, the next questions are made: which the most 
likely failure stations are? how faults will propagate to 
other lines? how the network connectivity is? which are 
the alternate routes in case of failures? 

So, we will focus this analysis with Complex Networks 
to identify the stations that have the most important 
problems and its vulnerability, and we will create 
different scenarios from which we will have the 
simulation of the whole system and how it works with 
the different scenarios. 

3. METHODOLOGY
For the methodology we will follow the next steps. 

Figure 2 Steps Methodology 

For this study we focused on the analysis of the analysis 
of the metro system to identify as a first approach.  

1. First Step
This step is maybe one of the most difficult steps 
because we need to look up for all the data that is 
relevant for the study. 

2. Second Step
So, with this information the second step was to analyze 
the data with basic statistical techniques.  

3. Third Step
We can create the network in different ways, the most 
common is with the adjacency matrix. An adjacency 
matrix is a square matrix used to represent a finite graph 
or network.  

4. Fourth Step
Once the network is obtained, we used the methodology 
of complex networks, specially to analyze the topology 
or structure of the networks, for example, the clustering, 
the closeness, betweenness, assortativity, and more 
metrics of complex networks. Also, we can have the 
degree distribution of the networks and we can have a 
good approach of the network’s behavior. With all the 
metrics and the degree distribution we can classify the 
networks into one of the different networks model 
(Random Networks, Small World Networks and Scale-
free Networks). 
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5. Fifth Step
The fifth step consists in translate the information to 
time series, so we did a decomposition of time series 
into the three components series (Seasonal, Trend and 
Random), we obtained the ACF (Auto Correlation 
Function), PACF (Partial Auto Correlation Function). In 
this step we also can create time series models like 
ARIMA (Autoregressive Integrated Moving Average) 
models to do some forecast of the data. 

6. Sixth Step
For the simulation process we will build different 
scenarios of the network to analyze the different 
structures and the vulnerability so we can compare 
which network is better. We can have different scenarios 
for example what happen if we delete one node or an 
edge. 

4. RESULTS
For the statistical analysis, we used the R software, 
which is an open source programming language and 
software environment for statistical computing and 
graphics. For this work, we used specific R software 
packages, such as, igraph, networks, tkrplot, sand, sna, 
forecast, TimeSeries, TSA and others. Software allows 
us to generate graphs/networks, compute different 
network metrics like clustering or transitivity, different 
centrality metrics, plot networks, create mathematical 
models, forecast data and more functions. Also, we used 
a BI (Business Intelligence) software that allow us to 
have some data preparation just like an ETL (Extract, 
Transform, Load) process and to create reports and 
visualization of our data.  

According to the methodology, at the first step we have 
the data of the number of passengers by station and 
trimester from the first trimester from 2011 to the first 
trimester of 2019. 

Computing basic statistics: First, we analyze the number 
of passengers per line, to have the ranking of the lines 
with more passengers. 

Table 1 Number of Passengers per Line 
Line Passengers % 

Line 2 2,399,777,835 17.87% 
Line 1 2,128,428,724 15.85% 
Line 3 1,944,304,705 14.47% 
Line B 1,313,948,094 9.78% 
Line 8 1,129,922,146 8.41% 
Line 9 952,297,672 7.09% 
Line 5 882,986,511 6.57% 
Line 7 828,596,887 6.17% 
Line A 794,763,580 5.92% 
Line 12 592,338,103 4.41% 
Line 4 249,863,002 1.86% 
Line 6 215,006,325 1.60% 
Total 13,432,233,584 100.00% 

Then, we analyze the number of passengers per station 
to also have a ranking of the station with the highest 
numbers of passengers. 

Table 2 Top 10 Number of Passengers per Station 
Line Station Passengers 

Line 3 Indios Verdes 345,139,908 
Line 2 Cuatro Caminos 344,277,759 
Line A Pantitlán A 300,460,361 
Line 5 Pantitlán 5 267,067,692 
Line 8 Constitución de 

1917 
259,450,656 

Line 2 Tasqueña 259,221,934 
Line 9 Pantitlán 9 254,180,021 
Line 1 Observatorio 218,684,664 
Line 3 Universidad 217,461,690 
Line 2 Zócalo 204,023,284 

From the table 2 we can see that the station Indios 
Verdes is the most crowded, but we also can notice that 
Pantitlán is a hub so, the cumulative number of 
passengers is higher than at Indios Verdes, this is 
important because this means that we need to have 
special attention in this station.  

We continue with the methodology and we need to 
create a network. So, we have the structure of the metro 
system, characterize these data as an adjacency matrix, 
in this case, the nodes represent the stations and the 
edges represent the connections through the line. The 
next figure shows the structure of the system as a 
complex network. 
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Figure 3 Metro Complex Network 

Now, we have the system characterized as a complex 
network so now we can compute the different complex 
networks metrics to study the topological structure of 
our network.  

Table 3 Complex network metrics 
Results Total 
Nodes 195 
Edges 220 

Max. Degree 4 
Min. Degree 1 
Mean Degree 2.25641 

Diameter 39 
Mean Distance 12.94618 

Cliques 4 
Density 0.011631 

Assortativity 0.245905 
Global Clustering 0.056962 

Mean Local Clustering 0.017304 
Closeness Centrality 0.059484 

Degree Centrality 0.008988 
Betweenness Centrality 0.144816 

The minimum degree corresponds to 1 and it makes 
sense because they are the terminal stations, the 
maximum degree is 4 that corresponds to stations like 

Pantitlán, meanwhile the average grade is 2.25, which 
tells us that there are very few stations that are transfer. 

On the other hand, the density is important, it tells how 
connected the network is, the real systems modeled with 
networks, in general, are not very dense, due to the cost 
of the links. The network has a density of 0.011 which 
indicates that the connectivity within the network is very 
low and poor. 

Another of the metrics that we use in this analysis is the 
mean distance, which is the average of the distances 
between all pair of nodes, so we expect that the networks 
have a low average distance, which has to do with the 
small world property, but in this case we have a mean 
distance of 12.94 that is quit high in comparison with 
the number of nodes and edges. 

In addition to the metrics that are listed above, we are 
interested in studying the topology of the network so 
clustering is important and, we start with the global 
clustering, it means what the tendency of the network is 
to form triangles or to be transitive, so, the global 
clustering is very low it is 0.056, so it has a low tendency 
to form triangles. While, if we look at the mean local 
clustering, it is very similar to the global clustering but 
in this case, it is lower (0.017) so we can say that there 
is no tendency to form small groups, that is, they remain 
in the whole group.  

On the other hand, the betweenness centrality, helps us 
to identify how important a node is within a network, 
computing how many short paths pass through the node 
in question, so we compute the average of the 
intermediate centrality of each case and we obtained a 
value of 0.144, the network has a very low betweenness 
centrality. The closeness centrality focuses on 
computing the shortest paths of each node to all other 
nodes in the network, we have that the closeness is 
relatively high. If we talk about the correlation of nodes, 
we have the coefficient of assortativity that gives us 
values between -1 and 1, therefore we can say if a 
network is assortative or dissortative, so, our network 
has a value of 0.24 with this we can say that it is 
assortative. 

Figure 4 Degree Distribution Total Passengers Metro 
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We can observe that the distribution of degree seems to 
be binomial.  

With all these results we are able to analyze and 
compare the behavior of the different stations and lines, 
in addition, we could analyze the topology of the whole 
system, which concludes the type of network model is 
and what specific characteristics and properties they 
share. 

The next step is to perform the time series analysis, so 
first we organize and sort our date by the date (the most 
recent date and the end). Then we plot our time series 
just as the example of the figure 5, where we plot the 12 
lines as a time series.  

Figure 5 Time Series Passengers per Line 

We can see that there are some lines that have the same 
behavior for example the lines 1,2 and 3, and we can 
make clusters with the lines that have the same patterns. 
We have a strange behavior in the line 12 because it was 
open by the end of October 2012 then the part of the line 
was close due to technical problems. 

Figure 6 Time Series Total Passengers 

On figure 6 we have the time series of all the passengers 
and the next step is to analyze the time series.  

We use the time series decomposition that is a 
mathematical procedure that transforms a time series 
into a multiple different time series. The original time 
series is often split into 3 component series: 

• Seasonal: patterns that repeat with a fixed
period.

• Trend: The underlaying trend of the metrics.
• Random: also call “noise”, “irregular” or

“remainder”, this is the residuals of the original
time series after the seasonal and trend series
are removed.

Figure 7 Decomposition Total Passengers Metro 

To continue with our analysis, we use the ACF (Auto-
Correlation Function) that gives values of 
autocorrelation of any series with its lagged values. We 
plot these values along with the confidence. We have an 
ACF plot. In simple terms, it describes how well the 
present value of the series is related with its past values. 
A time series can have components like trend, 
seasonality, cyclic and residual. ACF considers all these 
components while finding correlations hence it’s a 
complete auto-correlation plot. 

Figure 8 ACF Total Passengers Metro 

We also used the PACF (Partial Auto-Correlation 
Function. Basically, instead of finding correlations of 
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present with lags like ACF, it finds correlation of the 
residuals (which remains after removing the effects 
which are already explained by the earlier lag(s)) with 
the next lag value hence ‘partial’ and not ‘complete’ as 
we remove already found variations before we find the 
next correlation. So, if there is any hidden information 
in the residual which can be modeled by the next lag, we 
might get a good correlation and we will keep that next 
lag as a feature while modeling. Remember while 
modeling we do not want to keep too many features 
which are correlated as that can create multicollinearity 
issues. Hence, we need to retain only the relevant 
features. 
 

 
Figure 9 Total Passengers Metro 

 
The ACF and PACF plots are more common used to 
obtain the values of p and q to feed into the ARIMA 
model. 
 
All these analyses are important because it show us 
which are the patterns, seasonality and trend that the 
passengers follow throughout the time. 
 
For the simulation scenarios we made 2 even more 
scenarios can be constructed depending on the problem 
that the network has to face. The first scenario is when 
we delete Pantitlán (the four stations of the lines 1,5,9, 
A and it´s connections) station that is one of the most 
important because of the number of passengers and the 
connections. The second scenario is when we delete the 
station with the lowest number of passengers that in this 
case is Tlaltenco. 

 

 
Figure 10 Scenario 1 

 
 

 
Figure 11 Scenario 2 

 
On the scenario 1 there is a community (all the line A) 
that is completely disconnected from the whole system 
and in the case of the scenario 2 we only delete one 
station and this station is the last one of the line 12 so 
the only problem here is that the terminal station 
Tláhuac is completely disconnected from the system. 
 
According with the methodology, we compute the 
different complex network metrics for both scenarios 
and then we analyze and compare the results with the 
original network. 
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Table 4 Results Scenarios 

Comparing the three-network metrics, we find that the 
maximum degree is the same but the minimum degree 
on the scenario 2 is 0 because we delete the node that is 
the only connection with the terminal Tláhuac, so 
Tláhuac had 1 degree and when we delete Tlaltenco, 
Tláhuac remain alone. The mean degree is almost the 
same, in the case of the diameter on the scenario 2 there 
is a difference of 2 nodes so is a smaller size, but where 
we find the greatest difference is on the mean distance 
because on the scenario 1 it increases a lot so this tell us 
that Pantitlán station is important in our system and if 
we delete this station our connectivity decrease so we 
cannot remove or change this station. On the other hand, 
the centrality metrics does not change so much, so the 
scenarios remain with almost the same characteristics of 
the original network. 

We also plot the degree distribution of the scenarios 1 
and 2. 

Figure 12 Degree Distribution Scenario 1 

Figure 13 Degree Distribution Scenario 2 

Both plots follow a binomial distribution just like the 
original network. 

5. CONCLUSIONS
We conclude that the degree distribution of the network 
follows a Binomial Distribution, and in this case the 
network follows a Random Network Model because of 
the binomial distribution on the degree, the mean 
distance is high (tends to p ~ logN), the clustering is low 
(tends to k/N), where k is the average degree of the 
nodes.  

In random networks, the neighbors of a certain node are 
chosen at random, so there is no correlation between the 
degree of neighboring nodes. Finally, these networks are 
more robust to targeted attacks, but at the same time they 
are vulnerable to internal errors. 

After the time series analysis, we concluded that there is 
no evidence of a growing trend in the number of 
passengers and we could find some patterns in the 
seasonal cycles.  

It is difficult to find the behavior patterns in a macro 
level so for the next steps we will do the same analysis 
but in a medium and micro levels. We will use the same 
methodology on the stations and lines that are more 
crowded to find and implement real solutions for this 
complex system. Also, the simulation will help us to 
create different scenarios to improve the way the metro 
works.  

Results Total Scenario 1 Scenario 2 
Nodes 195 191 194 
Edges 220 212 218 

Max. Degree 4 4 4 
Min. Degree 1 1 0 

Mean 
Degree 2.25641 2.219895 2.268041 

Diameter 39 39 37 
Mean 

Distance 12.94618 28.40568 14.30458 

Cliques 4 3 4 
Density 0.011631 0.01168366 0.01175151 

Assortativity 0.245905 0.1842668 0.24273 
Global 

Clustering 0.056962 0.02006689 0.05538462 

Mean Local 
Clustering 0.017304 0.00571429 0.01657459 

Closeness 
Centrality 0.059484 0.02111135 0.05236912 

Degree 
Centrality 0.008988 0.00936897 0.00897388 

Betweenness 
Centrality 0.144816 0.1533715 0.1566145 
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