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ABSTRACT 

This work proposes the development of two Artificial 
Neural Network (ANN) models for demand forecasting 
in the automotive industry. The networks are involved 
for predicting the demand of eighteen car components 
for a company based in the North of Italy. Statistical 
Package for Social Sciences (SPSS) was used as 
software for developing the ANNs, by setting the 
automatic architecture selection. The structure of the 
two ANN models is similar; they only differ for the 
partitioning of the historical data provided by the 
company itself respectively into training, testing and the 
optional holdout phases: in the first, which is the one 
returning the best result, data are simply assigned 
according to a pre-fixed percentage, while in the second 
a partitioning variable is introduced. 

Keywords: Artificial Neural Network (ANN); demand 
forecasting; case study; automotive industry; SPSS. 

1. INTRODUCTION
Whether the whole production will be employed, the 
out of stock (OOS) followed by loss of sales or a 
surplus will occur and many others, are among the main 
question marks affecting companies in almost any 
industry field. If the demand forecasting was an exact 
science, there would probably be no failures, problems, 
waste or dissatisfactions; but in a stochastic world the 
variability of the demand is an anchor which necessarily 
has to be taken into account and this creates a challenge 
because firms have to make operational decisions 
before this uncertainty is resolved (Jiang et al., 2016).  
The demand forecasting is defined by Fradinata et al. 
(2014) as the process of using sales history of a 
determined product and projecting the demand in the 
future in order to schedule and support purchases, 
production, resources allocation, level of stocks, sales, 
workforce and many other items; accordingly, its 
estimated value is vitally important in business context. 
Moreover, the customer satisfaction is a direct 
consequence of an accurate demand forecasting process.  
Among the main benefits achievable through an 
accurate forecasting, surely on top fewer missed sales, 
followed by higher customer-service levels, lower 

working capital, more efficient manufacturing, less 
waste and spoilage, reduced effort and raw 
material/finished goods inventory (Myerholtz and 
Cafferey, 2014; Croxton et al., 2002). 
Several tools can be involved in predicting the demand 
of a determined product or component, both quantitative 
(e.g. the renowned autoregressive and integrated 
moving average, better known as ARIMA, or the 
exponential smoothing) and qualitative (e.g. Delphi 
method or life-cycle analogy).  
As complexity and dimensions of supply chains are 
always undergoing changes and development, 
traditional forecasting techniques such as the 
aforementioned methods are not always suitable to deal 
with difficulty and especially nonlinear nature of the 
problem (Laosiritaworn, 2011). According to that, more 
reliable and accurate tools were required and among 
these the Artificial Neural Networks (ANNs) have been 
widely used in the context of demand forecasting, since 
the Sixties.  
ANNs are machine learning algorithms (Yucesan et al., 
2017) aiming at solving classification, optimization, 
pattern recognition and forecasting problems 
(Hamzaçebi et al., 2017) by taking inspiration from the 
natural behaviour of neurons in the human brain. Their 
main peculiarity is that, just like neurons do, these 
networks learn from experience and examples, and are 
able to capture subtle functional relationships among 
input and output data even if these relationships are 
unknown or hard to describe (Zhang et al., 1998). To 
this end, they are firstly trained by providing a sample 
of input and related output so that they can identify the 
function connecting these data; secondly, the testing 
phase inspects whether the output obtained from a set of 
initial input by applying the model identified in the 
training phase is in line with the real output; thirdly the 
optional holdout step repeats the process for a new set 
of data for verification. The accuracy of findings is 
measured through the deviation between the output of 
the ANN and the real output value (i.e. the error).  
Specifically, within the context of demand forecasting, 
input data for the ANN are those factors impacting and 
affecting the demand, which corresponds to the output. 
According to what has been said, the aim of this paper 
is to present two ANN models developed to predict the 
demand of car components for a company (for the sake 
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of privacy the anonymity is respected, and in the 
following we will generally refer to Company A) 
operating in the automotive sector, based in the North of 
Italy. In particular, it produces racing cars by 
assembling components which can be either supplied or 
made in-house; typically, cars are directly sold to teams 
participating to worldwide championships, while for 
components the market is wider since also other 
companies or privates are reached. 
The two models own the same structure, while they 
differ for the historical data division respectively into 
training, testing and the optional holdout phases.  
Statistical Package for Social Sciences (SPSS) release 
25 for Windows (IBM) was chosen as software for 
developing the ANNs and simulating the trend in 
demands.  
For an exhaustive and current review of the relevant 
literature on the use of ANNs for demand forecasting 
problems see Bottani et al. (2019), demonstrating the 
versatility and the flexibility of the tool as it is proposed 
in different contexts. As far as the automotive sector, 
the only works in line with our specific topic are by 
Gonazález Vargas and Cortés (2017) and by Shahrabi et 
al., (2009), in both of which different forecasting 
methods, including the ANNs, are implemented and 
compared in predicting the demand of car spare-parts, 
respectively in Mexico and Iran. Indeed, this very 
limited number of studies is the reason why the choice 
fell on this specific industry field; moreover, the 
automobile supply chain is complicated because of the 
thousands of components and parts which makes it 
involving numerous suppliers, distributors and other 
organizations (Jiantong et al., 2016), and being able to 
speculate and prevent their demand is a key point for 
companies’ success.  
The remainder of the paper is as follows: in section 2 
the methodology is described; section 3 provides a 
general background on the structure of the ANNs; 
section 4 presents the two models developed, followed 
by section 5 where results are proposed. Implications 
and conclusions are finally provided in section 6. 

2. METHODOLOGY
The framework proposed by Bottani et al. (2019) has 
been taken as guideline for the construction of the two 
networks, properly modified when necessary. The 
procedure is below depicted (Figure 1) and summarized. 

Figure 1 - Adapted framework by Bottani et al., (2019) 
for the development of an ANN. 

1. Problem formulation: the context in question
has been analyzed together with the
management of Company A, as well as the
problem to be faced and the inputs of the ANN
which influence the requested output results;

2. Choice of the inputs and outputs of the ANN:
once the main inputs were identified in step 1,
the relevant ones were further selected;

3. Data collection: three-monthly data from 2013
to 2018 were made available directly from
Company A, thanks to meetings and interviews,
considering as fiscal year the period 1st July-
30th June;

4. Network setting: definition of the structure of
the network.

In the original framework by Bottani et al., the fourth 
step was further divided into three sub-steps, namely the 
identification of the network training algorithm, the 
transfer function and the termination criterion, and 
followed by two additional steps, namely the choice of 
the hidden neurons and layers, and the parameter 
settings with the final choice of the best ANN 
configuration: in this case these sub-steps are redundant 
since an automatic architecture selection by SPSS was 
set, which already has default settings. 
Once the networks were defined, the ANNs were 
trained with historical data and then tested. 

3. BACKGROUND ON THE ARTIFICIAL
NEURAL NETWORK STRUCTURE 

A neural network has at least two physical components: 
the processing elements (i.e. neurons) and the 
connections between them (i.e. links, having a weight 
parameter associated) (Zhang and Gupta, 2000). Each 
neuron receives stimuli from the neighboring neurons 
connected to it, and after processing the information 
produces outputs. Many configurations are possible; in 
the following we will refer to the most popular type of 
neural network, namely the Multilayer Perceptron 
(MLP), consisting of at least three layers of nodes: an 
input layer, a hidden layer and an output layer. Input 
neurons are those receiving stimuli from outside the 
network; hidden neurons, conversely, capture signals 
from other neurons, and analogously transmit a signal to 
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other neurons; these last are the output neurons. This 
structure is known as feedforward architecture, because 
the information flow starts from input neurons and 
flows forward to the output layers without any loop. 
Each received input is multiplied by the corresponding 
weight parameter and results are added in order to 
produce a weighted sum, which passes through an 
activation function to produce the final output of the 
neuron. 
Figure 2 below outlines the general MLP structure. 

 

Figure 2 – Structure of a Multilayer Perceptron. 

Specifically, the key elements to be defined for the 
development of an ANN are the following: dependent 
(i.e. output neurons) and independent (i.e. input 
neurons) variables; number of hidden layers and their 
relative activation function linking the weighted sums 
of units in a layer to the values of units in the 
succeeding layer, and the number of units in each 
hidden layer; the output layer with its activation 
function and the eventual method of rescaling the 
dependent variables; the measure of the error; the type 
of training and the optimization algorithm used to 
estimate the weights, together with the stopping rule 
determining whether the training should stop or not. 
Last but not least, the partition dataset has to be set, 
necessary to divide the available data respectively into 
training, testing and holdout samples. 

 
4.  DEVELOPMENT OF THE ARTIFICIAL 

NEURAL NETWORKS 
 

4.1. Input and output selection 

The aim of the tool is to predict the demand of the 
following seven car components whose impact in terms 
of revenue is relevant for Company A: nose, front 
spoiler, machine structure, arms, brake discs, upright 
and bearings. Note that some components can be “right” 
or “left”, “upper” or “lower”; accordingly, the final 
number of components analyzed is eighteen.  
Starting from these desired outputs, the key factors 
affecting the demands were identified as well; as a 
result, the following seven elements have been 
considered as inputs:  

1. Component category, as many items can be 
grouped into a main class;  

2. Championship to which sales data are related, 
since different championships correspond to 
different climatic conditions and cultural 
factors, which may affect accidents or spare 
parts demand; 

3. Number of machines competing in each 
championship, which can also change from 
year to year; 

4. Number of races of each championship, which 
can vary as well from year to year; 

5. Ageing, simply attributable as YES or NO 
depending on the component; 

6. Car life cycle, namely first year of life, interim 
period and last year of life; 

7. Trimester, namely July-September, October-
December, January-March, April-June. Note 
that this input was considered only in the first 
model, as in the second one the partitioning 
variable imposes a data partitioning in 
accordance with the reference year, regardless 
of the trimester. 

4.2 Architecture of the models 

The automatic architecture selection by SPSS was 
chosen, procedure which automatically builds the best 
ANN configuration and includes default settings. 
The demand value of the eighteen items corresponds to 
the dependent variable, while the seven previously 
mentioned inputs to the independent variables. 
In this case, the automatic selection allows only one 
hidden layer by default, activated by the hyperbolic 
tangent. Even as far as the activation function for the 
output layer (containing the dependent variable) the 
automatic selection led to the only choice of the identity 
function. The rescaling of scale dependent variables was 
set as standardized; the error as the sum-of-squares. 
Once these key points were fixed, it is the turn of the 
training. The online training has been selected, mostly 
used when big data are available; according to SPSS, 
when this type of training is involved, the optimization 
algorithm through which the synaptic weight are 
identified necessarily is the gradient descendent.  
The training stops when, after a specified number of 
steps, there is no decrease in error. 
The difference between the two models comes from the 
breakdown of data for the training-testing-holdout 
phases. Indeed, SPSS offers the opportunity to choose 
from two ways, both investigated: to randomly assign 
percentages (Model 1) or to use a partitioning variable 
(Model 2). The holdout step is considered only in the 
first model as the partitioning variable, by attributing 
value 0 or 1, only divides data in two main groups, 
namely training and testing. 
Table 1 below summarizes the main characteristics of 
the models. 
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Table 1: Settings of the models. 

DEPENDENT VARIABLES 
Demand of 
the 18 car 

components 

INDEPENDENT VARIABLES 
7 input 
factors 

HIDDEN 
LAYERS 

Hidden Layers 
Number 

1 

Units in the 
Hidden Layers 

9 

Activation 
Function 

Hyperbolic 
Tangent 

OUTPUT 
LAYERS 

Number of Units 1 

Rescaling of 
Scale Dependent 

Variables 
Standardized 

Activation 
Function 

Identity 

Error Function 
Sum-of-
Squares 

TRAINING 
Type Online 

Activation 
Function 

Gradient 
Descent 

PARTITIO-
NING 

MODEL 1 
Pre-fixed 

Percentages 

MODEL 2 
Partitioning 

Variable 

Table 2, instead, shows the exact subdivision of 
historical data into the three phases. 
Specifically, the partitioning variable used in model 2 
imposes that data until 2017 are involved in the training 
phase, while from 2018 onwards for tests. Note that no 
outlier or missed values were found, probably due to the 
niche market in which Company A operates. 

Table 2: Historical data subdivision into training, 
testing and holdout phases; in brackets the percentage. 

MODEL 1 MODEL 2 
TRAINING 

PHASE 
2.341 (80.6%) 2.660 (91.6%) 

TESTING 
PHASE 

282 (9.7%) 245 (8.4%) 

HOLDOUT 
PHASE 

282 (9.7%) - 

TOTAL 2.905 (100%) 2.905 (100%) 

5. RESULTS
Table 3 below shows the relative errors resulting during 
first the training phase, then the testing and holdout 
respectively for Model 1 and Model 2. 

Table 3: Relative errors resulting from the two models 
of ANN. 

MODEL 1 MODEL 2 
RELATIVE ERROR (%) 

TRAINING 
PHASE 

53.7 49.7 

TESTING 
PHASE 

35.9 51.5 

HOLDOUT
PHASE 

41.1 - 

As can be seen, two opposite situations occur: in Model 
1, the testing phase successfully returns a relative error 
lower than the training phase, while in Model 2 after the 
training the error increases a bit. According to that, we 
can argue that Model 1, namely the one in which data 
were partitioned according to pre-fixed percentages, is 
more reliable and accurate. 

Furthermore, by deepening results, an analysis on the 
impact of each independent variable was carried out; 
outcomes are below depicted in percentages (Table 4 
for Model 1 and Table 5 for Model 2).  

Note that the normalized value is obtained by dividing 
the impact value itself of each item for the maximum 
value identified (e.g. for Model 1, the impact of the 
component category, namely 25.3). 

Table 4: Percentages of inputs’ effects on outputs for 
Model 1. 

MODEL 1 

IMPACT 
NORMALIZED 

IMPACT 
Component 

Category 
25.3 100 

Championship 14.9 58.9 
Number of 
Machines 

6.6 26.3 

Number of 
Races 

13.0 51.6 

Ageing 23.5 92.7 
Car Life Cycle 3.2 12.5 

Trimester 13.5 53.5 
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Table 5: Percentages of inputs’ effects on outputs for 
Model 2. 

MODEL 2 

IMPACT 
NORMALIZED 

IMPACT 
Component 

Category 
28.9 100 

Championship 21.0 72.6 
Number of 
Machines 

4.9 16.8 

Number of 
Races 

26.5 91.9 

Ageing 14.0 48.4 
Car Life Cycle 4.7 16.6 

By modifying the allocation of historical data, the 
relative importance of the different impact changes. 
In both cases, the component category is the item 
affecting the most the output, followed by, respectively, 
the ageing for Model 1, and the number of races for 
Model 2 which, conversely, is not relevant in the first 
model. The life cycle, instead, turns out to have a low 
effect on both results. 

6. CONCLUSIONS
This paper aimed at presenting two models of artificial 
neural networks developed in Statistical Package for 
Social Sciences for the demand forecasting of car 
components for a company operating in the automotive 
sector in the North of Italy. The automatic architecture 
selection was set for both models, including default 
settings of parameters; accordingly, the two models are 
similar, differing only for the data allocation into 
training, testing and holdout phases. 
Eighteen car components were analyzed.  
Overall, the models were proved to be successful, and 
can be an effective support for management in their 
operational decisions and production planning. 
Specifically, Model 1, retuning a significant reduction 
of the relative error during the testing phase, turned out 
to be the best configuration among the two. 
The study contributes in deepening the applications of 
ANNs in the field of demand forecasting, demonstrating 
once again the great potential of the tool as a promising 
alternative approach to traditional linear methods. 
For sure, further insights can be considered. For 
instance, other tools can be tested with the same dataset 
in order to compare results; more ANNs models can be 
developed, e.g. by combining the component category, 
which turned out to be the most impactful input, or by 
taking into account a different timespan (e.g. annual 
data). Furthermore, considering applying also genetic 
programming techniques and benchmark the two 
approaches would be interesting. 
Models can also be implemented in fields other than the 
automotive, by taking into account different products or 
components. 
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