Households income-expenses network simulation

  • Javier Lara de Paz  ,
  • Idalia Flores de la Mota  ,
  • Gabriel Policroniades Chipuli  ,
  • d Sashiko Shirai Reyna  
  • a,b,c,d Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico
Cite as
Lara de Paz J., Flores de la Mota I., Policroniades Chipuli G., Sashiko Shirai Reyna O. (2019). Households income-expenses network simulation. Proceedings of the 31st European Modeling & Simulation Symposium (EMSS 2019), pp. 210-217. DOI: https://doi.org/10.46354/i3m.2019.emss.030.

Abstract

Economic systems are recognized as complex systems that can be modeled as complex networks. Analyzing and simulating with the outcoming networks parameters can be obtained the vulnerability and robustness of system’s network, assisting the developing of economic policies. In present work we built up an economic weighted directed network between the catalogued labors, the productive sub-sectors, based on 4-digits NAICS-2018, and the eight common household expenses. Weighting edges with total household incomes and total amount paid for each expense. The network is constructed with a sample size of more than one hundred-thirty thousand households. With complex network metrics and adding an inflation rate to each main Expense category, the simulation was performed obtaining key economic properties such as wealth distribution per household and sectors vulnerabilities as well as system robustness.

References

  1. Albert, Réka, and Albert-László Barabási. 2002. “Statistical Mechanics of Complex Networks.” Reviews of Modern Physics 74 (1): 47–97. https://doi.org/10.1103/revmodphys.74.47.
  2. Albert, Reka, Hawoong Jeong, and Albert-Laszlo Barabasi. 2000. “Error and Attack Tolerance of Complex Networks.” Nature 406 (6794): 378–82. https://doi.org/10.1038/35019019.
  3. Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. 2006. “Complex Networks: Structure and Dynamics.” Physics Reports 424 (4): 175–308. https://doi.org/10.1016/j.physrep.2005.10.009.
  4. Bouchaud, Jean-Philippe. 2008. “Economics Needs a Scientific Revolution.” Nature 455 (October): 1181.
  5. Caldarelli, Guido, and Michele Catanzaro. 2014. Redes: Una breve introducción. Translated by María Hernández Díaz. Edición: edición. Madrid: Alianza.
  6. Catanzaro, Michele, and Mark Buchanan. 2013. “Network Opportunity.” Nature Physics 9 (3): 121–123. https://doi.org/10.1038/nphys2570.
  7. Deguchi, Tsuyoshi, Katsuhide Takahashi, Hideki Takayasu, and Misako Takayasu. 2014. “Hubs and Authorities in the World Trade Network Using a Weighted HITS Algorithm.” PloS One 9 (7): e100338–e100338. https://doi.org/10.1371/journal.pone.0100338.
  8. Hassani, Hossein, Gilbert Saporta, and Emmanuel Sirimal Silva. 2014. “Data Mining and Official Statistics: The Past, the Present and the Future.” Big Data 2 (1): 34–43. https://doi.org/10.1089/big.2013.0038.
  9. INEGI. n.d. “ENIGH 2016.” Accessed May 15, 2019a. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825091934.
  10. “Sistema de Cuentas Nacionales de México. Fuentes y Metodologías. Año Base 2013.” Accessed May 15, 2019b. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825097165.
  11. Klimkova, E., Roman Senkerik, and Ivan Zelinka. n.d. “Topological Structure Analysis in Directed Network.” In .
  12. Lara de Paz, Javier, Idalia Flores de la Mota, Gabriel Policroniades Chipuli, and O. Sashiko Shirai reyna. 2019. “WEALTH AND INCOME DISTRIBUTION: A REVIEW TOWARDS NEW TRENDS” 04 (01): 29.
  13. Levorato, Vincent, and Coralie Petermann. 2011. “Detection of Communities in Directed Networks Based on Strongly P-Connected Components.” In 2011 International Conference on Computational Aspects of Social Networks (CASoN), 211–216. IEEE.
  14. Network Science by Albert-László Barabási. n.d. Accessed May 15, 2019. http://networksciencebook.com/.
  15. SCHWEITZER, FRANK, GIORGIO FAGIOLO, DIDIER SORNETTE, FERNANDO VEGAREDONDO, and DOUGLAS R. WHITE. 2009. “ECONOMIC NETWORKS: WHAT DO WE KNOW AND WHAT DO WE NEED TO KNOW?” Advances in Complex Systems 12 (04n05): 407–422. https://doi.org/10.1142/s0219525909002337.
  16. Shizuka, Daizaburo, and Damien R. Farine. 2016. “Measuring the Robustness of Network Community Structure Using Assortativity.” Animal Behaviour 112 (February): 237–46. https://doi.org/10.1016/j.anbehav.2015.12.007.
  17. Silva, Thiago Christiano, and Liang Zhao. 2016. “Complex Networks.” In Machine Learning in Complex Networks, 15–70. Springer International Publishing. https://doi.org/10.1007/978-3-319-17290-3_2.
  18. “Sistema de Clasificación Industrial de América del Norte, México SCIAN 2013.” n.d., 596.
  19. Zanin, M., D. Papo, P. A. Sousa, E. Menasalvas, A. Nicchi, E. Kubik, and S. Boccaletti. 2016. “Combining Complex Networks and Data Mining: Why and How.” Physics Reports 635: 1–44. https://doi.org/10.1016/j.physrep.2016.04.005.