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ABSTRACT 
Economic systems are recognized as complex systems 
that can be modeled as complex networks. Analyzing and 
simulating with the outcoming networks parameters can 
be obtained the vulnerability and robustness of system’s 
network, assisting the developing of economic policies. 
In present work we built up an economic weighted 
directed network between the catalogued labors, the 
productive sub-sectors, based on 4-digits NAICS-2018, 
and the eight common household expenses. Weighting 
edges with total household incomes and total amount 
paid for each expense. The network is constructed with a 
sample size of more than one hundred-thirty thousand 
households. With complex network metrics and adding 
an inflation rate to each main Expense category, the 
simulation was performed obtaining key economic 
properties such as wealth distribution per household and 
sectors vulnerabilities as well as system robustness.     

Keywords: Complex Networks , Complex systems,  
simulation 

1. INTRODUCTION
In many countries, their National Statistical Institutes 
carry out periodically a demographic survey system, 
either as a census or as a sampling survey. These surveys 
are designed to collect information about National 
Accounts, demographic characteristics, as well as 
economic behaviors and patterns, among many other 
information that can be of national interest. In some of 
these surveys it is described how much population earn, 
and how much money is spent in principal expenses, or 
what are the economic activities, even at a household, 
companies or grand productive sectors level. The 
information obtained is used by researchers of the 
academic, public or financial sectors. Even by 
economists, which by means of econometric, statistical 
or financial methods, among many others approaches, 
develop models to estimate either the demographic or 
financial behaviors. Also, it is possible to estimate the 
macro-economic information, the GDP, inflation and 
unemployment rates, economic growth, added values of 
different productive sectors. It can be considered that the 
techniques applied can be considered as in a “traditional” 
framework, which doesn´t allow to visualize robustness 
of the system. A review of evolution to new  trends in 

economical methods can be seen in (Lara de Paz et al. 
2019). Or to find weakly points that risk the system’s 
functionality, or even to obtain clustering formations, 
leader entities, or structural relations within system. 
Some of the variables included in the generated metadata 
from surveys or census, are the economic activities 
performed by households. Also, information about labor-
activities is gathered indicating in which economic 
productive sectors do these agents work, and how much 
do they earn as well as in what and how much do they 
spend. These data is collected through the Households 
Income-Expenses Survey carried out in Mexico every 
two years since 1992. The scope in this information 
provides insight about what trades and crafts are 
performed per sector.  These functional relations can be 
constructed through a network architecture where 
economic activities, productive sectors and common 
expenses become nodes. Wages and amount spent 
correspond to the edges weight. The network topology 
constructed with the survey’s data provides more 
information than an analysis performed with traditional 
econometric and statistical treatments. In present work 
we constructed a network with the economic-activities 
per household’s variables, productive sectors and the 
principal expenses.  Data were obtained from Mexico´s 
official surveys about households’ expenses, jobs and 
Economic Census for the year 2016 (ENIGH-2016, 
Income-Expenses National Survey  (INEGI n.d.)). 
Mexico’s National Accounts System (SCNM)(INEGI 
n.d.) were also consulted. We combined Complex
Networks techniques with  Simulation approach to obtain 
more insight about Mexico’s socio-economic structure, 
(Hassani, Saporta, and Silva 2014). Zanin (Zanin et al. 
2016) presented in his work some techniques about 
combining Data Mining methods with Complex 
Networks theory mainly applied to medical research. 
They suggested that a network analysis from the system 
would be an advantage to identify the robustness of the 
system by identifying single nodes influence over the 
whole network. Although they also combined Data 
Mining methods with Complex Networks theory, but one 
of their strongest points was that complex networks 
allow representing the system’s internal structure of each 
individual agent relations in a simpler and more 
understandable way. To represent our system using 
Network topology let us have an overview of system 
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structure, formation of communities, collective 
behaviors  and to identify the diversity of nodes and its 
multiple connections, representing the complexity of the 
system (Silva and Zhao 2016). By applying a simulation 
methodology allow us to find which instances are more 
significant to robustness and vulnerability.  In the next 
introductory subsection some Complex Networks theory 
features are described to understand some of the metrics 
used as parameters to perform simulations. 

1.1. Complex Networks 
Interest in complex networks field has grown in many 
areas from physicists, mathematicians, biologists, 
engineering, computer scientists, among many others. 
The structure analysis of many different systems that can 
be represented as a network, are the Internet, World Wide 
Web, biological systems together with chemical systems, 
financial, social, neural, and communication networks. 
Although these systems can represent artificial or natural 
systems, they share a main feature, the complexity. 
Barabási, one of the more active researches in this field 
(Network Science by Albert-László Barabási n.d.) 
specified that an adequate manner to represent evolution 
of a complex system, can be through its network 
topology. Catanzaro and Buchanan (Catanzaro and 
Buchanan 2013), mentioned some disadvantages of main 
stream economic theories for preventing an economic 
crisis like in 2008, and pointed some advantages in 
developing financial networks. About application of 
network structures to economic and  financial systems, 
Bouchaud (Bouchaud 2008) addressed to the necessity of 
the search and applications of different methodologies to 
aid main stream economic models.  Schweitzer et al. 
(SCHWEITZER et al. 2009), examine the emergence of 
many economic systems described as networks  and the 
consequences in analyzing through this approach, which 
is distinguished as a convenient way of data analysis. 
Caldarelli and Catanzaro (Caldarelli and Catanzaro 
2014) made a friendly description about many networks 
present in Nature. The system involved corresponds to a 
weighted network constructed as having a branching, 
treelike topology, like a transportation network with 
transfer nodes, becoming a directed network as well. 

1.1.1. Complex Network Metrics 
About the Complex Networks metrics and theory applied 
to describe our system, Boccaletti (Boccaletti et al. 2006) 
summarized the sufficient network’s features needed for 
analyzing its behaviors and evolution. Also the work 
done by Deguchi et al. (Deguchi et al. 2014) was used to 
estimate HITS metrics. For modularity and community 
properties, we based on Newman (Newman 2006). In the 
work  reported by Klimkova et. al ((Klimkova, Senkerik, 
and Zelinka, n.d.), described some methods to detect 
giant components in directed networks, and  Levorato 
and Petermann (Levorato and Petermann 2011) 
described some techniques to identify communities in a 
directed weighted network, based on the modularity, 
allowing to detect the number of communities or 

connected subgraphs in network´s system. In this work 
we calculated the following network metrics (table 1): 

Table 1: Network’s Metrics calculated at scale-levels 
Micro-scale  Nodes degree, in and out degree for a 

weighted network, eigenvector 
centrality 

Meso-scale Modularity, strong component 
number and assortativity  

Macro-scale Average path length 

To estimate the system’s robustness we performed the 
simulation adding and removing some high connected 
nodes according to a percolation model (D’Agostino and 
Scala 2014) and (Réka Albert and Barabási 2002).  In 
complex systems robustness presents a dynamical 
component, while representing these systems by its 
topological structure underlying in complex network, 
these error tolerance or the vulnerability can be addressed 
by edges/nodes removal leading to a change on stability 
of such systems related to error and attack tolerances. In 
present work we focus only on nodes removal, since 
some network structures are more robust against random 
node failures. The node removal mechanism consists in 
deleting nodes randomly, the second form is by removing 
highly connected nodes, considering the nodes with 
highest node degree. Other mechanisms are by cascade 
or percolation method. The remaining structure allow  us 
to obtain critical vulnerability of the system,  (Reka 
Albert, Jeong, and Barabasi 2000). 

2. SYSTEM’S STRUCTURE
The system considered is composed by three different 
class of elements, agents’ activities, which are referred to 
the diversity of jobs, trends or crafts, registered in 
corresponding surveys outcomes. These categories are 
classified based on Mexico’s National Catalogue of Jobs 
and Occupations (SINCO). The other class of elements 
corresponds to productive subsectors described at 4-
digits level based on the North American Industry 
Classification System (NAICS-2018). The third class are 
the eight main expenses done per households (housing, 
shoes & clothing, education, personal care, food, 
transportation, health care and cleaning-wares). The 
relation between elements correspond to: between jobs 
and sectors are total annually incomes. Relation between 
jobs and expenses are amount spent by household in 
every expense (Fig. 1). For each household entities 
considered in the ENIGH-2016 survey, a sample size of 
more than 130 thousand basic units, it was considered the 
economic activities (SINCO) the relation with their 
economic subsector (NAICS 4-digits classification) and 
the total annual incomes and total annual expenses in 8 
main expenses (Table 2).  
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Table 2: System´s elements for network structure 

Figure 1: System´s network generated by elements 
relations 

Figure 2: Image of first 3 rows CSV Data sheet used to 
construct system’s network. 

2.1. Network Structure 
To construct the network a directed origin-target layout 
was applied with origin nodes as Productive Subsectors, 
first target nodes as the occupational activities and 
directed to final nodes represented by the eight different 
categories of expenses. The network obtained is a 
directed weighted network with edges weights being the 
annual incomes for first branches and annual spent for 
second branches. For each household its corresponding 
branch was constructed: 

Subsector → economic activity  →  expenses 

Network visualization was performed with aids of 
NETWORK R-package, as well as network metrics 
calculations. The calculated Metrics are: 

• Node degree, in and out degree and weighted in
and out degree. For this metric node distribution
is estimated. For a weighted directed  network
this metric is calculated by adding (for in
degree) incoming edges weights by node.

• Nodes centralities, eigenvector centrality. This
measure indicates importance of each node
depending on its connections and weighted
links of them.

• Assortativity. This metric indicates capacity of
high connected nodes to connect to other high

connected nodes (positive assortatvity), or 
capacity of high connected nodes to connect 
with low degree nodes (negative assortativity). 
It is associated to robustness of system, as one 
high connected node is removed or changed, the 
remaining structure tends to link whether to a 
high connected node or to a low connected node 
in order to network structure to survive 
(Shizuka and Farine 2016)  

• Modularity: this meso scale measure, indicates
the formation of communities between similar
node categories. It is described with a number
related to the subgraphs formed by dividing
network in optimal number of communities.

• Strong community number: associated to
network’s modularity for each node indicates
the strongest association of each node to its
corresponding community. This metric is
obtained implementing the system´s network in
GEPHI software released 0.9.2 
(https://gephi.org)

• Vulnerability and robus. A removal of nodes is
done depending on different mechanism for
removing nodes. This measure exhibits systems
robustness, and a threshold that indicates when
network starts to show fatal errors.

From these metrics simulation performance is carried out 
to find robustness of the system through complex 
network approach, which is the main scope of present 
work. 

3. METHODOLOGY
Network construction and parametrization are based on 
the results of bi-annual Mexico´s Incomes and Expenses 
per Households National Survey carried out on 2014. 
Information is available as a metadata csv format file. 
The data sheet contains concentrated information of 
about 130’000 housing with data about location, 
economic activities, ages, genders, detailed incomes and 
expenses per households, among many other relevant 
variables. Out from this information we are interested in 
economic information about earnings, expenses, 
economic activities and where do heads of household 
work. We summarized earnings in total annual incomes 
and 8 different categories of expenses: housing, food, 
clothes & shoes, education, transport, personal care, 
health care and cleaning-ware. Each housing is identified 
with a unique Id code, by this it is possible to detect same 
households in different official surveys. Metadata results 
also show a variable indicating in which productive 
subsector the head of household works. The coding is 
based on the NAICS-2013 classification system 
(“Sistema de Clasificación Industrial de América del 
Norte, México SCIAN 2013,” n.d.). With this 
information it is possible to match each household in the 
survey sample with the productive subsector, the 
economic activity performed, annual and total amount 
expended in main 8 expenses. Intuitively, this matching 
generates a directed network (Fig. 1) with 11 different 
nodes categories for each corresponding column (Fig. 2) 

Productive 
Subsector 
(NAICS) 
2018 
version. 

Economi
c Activity 
(SINCO) 
2011 
version 

ANNUAL 
INCOME  

ANNUAL SPENT FOR 
EACH EXPENSES 
(EDGE WEIGHTS) 

• HOUSING
• FOOD 
• CLOTHES & SHOES
• EDUCATION
• TRANSPORT 
• PERSONAL CARE 
• HEALTH CARE
• CLEANING-WARE

CLASS 1 
ENTITIES 

CLASS 2 
ENTITIES 

EDGE 
WEIGHTS 

CLASS 3 ENTITIES 

income spent 
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and the edges are generated by every row, which 
correspond to each sampled household. Network 
structure is constructed under R coding, calculating 
network metrics, nodes degree (weighted in and out 
degree distribution, modularity, eigenvector centrality 
and vulnerability). This information allows us to have a 
state of the system of how it is behaving. Up to this 
information we start with simulation process. Network 
metrics results correspond to 2014 end year’s behavior of 
economic dynamics, with corresponding information of 
subsequent years (2015, 2016, 2017 and 2018) through 
simulation, it is possible to estimate the network 
topology with the corresponding metrics and finally the 
evolution of robustness of the system. Annual 
accumulated inflation rate per expense categories is the 
changing parameter for our simulation performances 
which affects directly to the expenses branches which go 
from occupation nodes (identified by the Mexican jobs 
classification system SINCO) to the 8 categories of 
expenses. Year 2014 will be our referenced year. About 
incomes increasing rates, it is assumed that they remain 
stable through the 4 years period. Inflation rates 
consider4ed are obtained from the National Consumer 
Price Indexes (NCPI) for the eight mentioned categories. 
These are obtained from official databases (Mexican 
Central Bank, BANXICO). Annual variations between 
years are multiplied to expenses edges, and network 
metrics are calculated for each 4 periods with year 2014 
as reference. In table 2 variations of the NCPI’s of 
Mexican economy information is showed for years 2014 
to end of 2018. Simulation report will show variation of 
network global weighted in and out degree indicating 
which productive subsectors or occupations are 
economically more connected to higher wages or earning 
nodes. For in-weighted degree, it indicates which 
occupations or labors are better paid if for a high degree, 
and for expenses categories which category is more 
economically significant for households. The 
eigenvector centrality is also reported indicating what 
targeted nodes are more important between occupations 
and expenses categories. Asortativity allows us to 
identify systems capacity of interacting between sectors 
and occupations and vulnerability shows robustness of 
considered system. Fig. 3 shows the process followed by 
methodology applied. 

Table 3 : Annual cumulative Mexican Inflation Rate for 
years 2014 to 2018* 

                      Year 
Expense   

End 
2014 

End 
2015  

End 
2016 

End 
2017 

End 
2018 

HOUSING 2.02 -0.07 1.11 5.14 2.54 

FOOD 6.53 2.32 4.31 7.92 5.39 

CLOTHES & SHOES 2.26 2.90 3.26 4.05 2.14 

EDUCATION 3.85 3.55 4.23 4.57 3.83 

TRANSPORT  4.45 2.43 4.25 11.48 9.36 

PERSONALCARE 6.80 4.51 4.89 5.76 5.34 

HEALTH CARE 2.87 3.33 4.15 6.13 4.43 

CLEANING-WARE 1.58 2.94 2.19 5.06 2.85 

*Source: INEGI 

Figure 3: Methodology 

4. SIMULATION 
To perform the simulation, parametrization of system is 
carried out by network construction and calculating 
networks node degree: weighted in and out degree, eigen 
centrality, assortativity and income distribution. It is 
identified the productive subsectors with more influence 
along the network structure, as wages represent edges 
weights from Subsector nodes to jobs/occupation target 
nodes, as higher out-weighted node degree a node 
presents, more economic influence the node has. About 
weighted in-degree, these correspond to earnings by 
transfer jobs/occupational nodes and for Expenses 
category nodes, as higher value it presents, more 
significant is the node over the network. Edges weights 
from jobs/occupations nodes to Expenses category 
nodes, as mentioned, represent the amount each 
household has paid for respective services. For the 
simulation, weights values are calculated, with the 
variation indexes of inflation rates corresponding to this 
category based on the year and on the node category,  
constructing four different networks models representing 
our system. The outcomes of network metrics are 
calculated in each case and interpreted under robustness 
insight. To finish with our comparative simulation 
outcomes, difference between weighted in and out 
degree distribution by node is analyzed, omitting the 8 
nodes expenses categories, resulting only for the 
jobs/occupation nodes category (Fig. 15). From this 
distribution the Gini coefficient is obtained as an 
estimation to understand income distribution after paying 
for life costs. These metrics are calculated for years 
2015-2018. Although consulted source corresponds to 
the 2016 survey edition (ENIGH_2016), information  
was collected along 2014 and 2015, hence our base year 
corresponds to 2014. From this year simulation are 
performed. In next subsection corresponding to 
simulation results analysis, it is shown network metrics 
for each year with respective modifications to inflation 
rate by product for each year.  
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4.1. System´s Network parametrization 
Fig. 4, shows the system´s network with 594 nodes and 
743409 edges. In left frame network is showed without 
label and nodes are sized based on its node in-degree. 
Bigger nodes represent the 8 Expenses categories. Right 
frame represents network with nodes sized based on its 
node out-degree.  

Figure 4: System´s network. 

Next the complex networks metrics are shown. Fig. 5 
shows the degree distribution plot. This metrics indicates 
the average links per node. The average node degree = 
15.59 which means that on average every node is linked 
with 16 different edges to its closest neighbors. It is 
important to underline that the 8 Expenses Categories 
nodes have a node degree = 450. But as shown in nodes 
degree distribution histogram (Fig. 6), about 120 nodes 
present a low connection degree. In Fig. 7, it is shown the 
distribution of nodes degree by nodes categories. Inside 
frames indicate the value of the high connected nodes 
corresponding to productive branch “General Public 
Administration” with a node degree of 143. This means 
that this productive subsector is the most diversified 
because of the different kinds of occupations it demands. 
About jobs/occupations category, the most linked node 
with a node degree of 101 corresponds to the 
9621classification job. This code is classified in the 
Mexican National Occupation System Catalogue 
(SINCO-211), as general cleaner and sweeper (except for 
hotels and restaurants). This means that this occupation 
is the most demanded job by a high diversity of 
productive subsectors. In Fig. 7,  nodes vs node degree is 
plotted omitting the 8 Expenses Category nodes and a 
power law is fitted. Inside labels shown node degree of 
most connected nodes by category. In the x-axe the node 
list is labeled, but due to space limitation it is adjusted to 
the font size and the complete list is not presented. Node 
degree indicates mainly a topological system’s feature, 
as one of main objectives is to gain more insight on 
economic dynamics other metrics are considered as 
weighted node degree. This metric indicates the sum of 
edge’s weight each node has, allowing us to estimate 
economical significance by node. As higher the value 
more significant is the node. For a system’s directed 
network representation there are two other metrics 
related to edges’ weight, weighted out and in degree. For 
Out-degree corresponds to the sum that a node had paid 
in general, as wages in the case of 
subsector→job/occupation edges, and for 
job/occupation→Expenses edges, it correspond to 
amount paid for living services described as Expenses. 

For weighted In-degree, it indicates, for the 
Jobs/Occupations category nodes, the total wages earned 
from the different subsectors each node is connected to. 
For the Expenses category nodes, this metric indicates 
how much is expended in each of the 8 categories by 
jobs/occupation category nodes. This last metric 
corresponds to the response to our control parameter 
inflation rate in simulation performance. Fig. 8 shows 
weighted node degree distribution. In vertical axis list of 
nodes are plotted and in horizontal axis it is shown the 
value of node degree. The node with highest degree 
(inside label) corresponds to productive subsector 
category node identified as “Education supporting 
Services” with a value of 36080309.98. It can be 
interpreted as this node has paid to its 93 (node degree) 
different occupations related to this category the 
mentioned amount (units are in Mexican pesos MXN, 
1USD~20MXN). In Fig. 9, a bar plot of weighted in-
degree for the 8 Expenses category nodes is presented. In 
Fig. 10, the distribution of weighted in-degree for 
Jobs/Occupation Category nodes is plotted. A Power-
Law fitting is shown (red dotted line) and an empirical 
equation with determinant coefficient is shown in upper-
right inside frame. With relation to the connectivity, 
relevance each node presents is expressed through 
eigencentrality value. In Fig. 11, eigencentrality value is 
plotted vs Jobs/Occupations category nodes. In both 
Figures, it can be observed that nodes with the highest 
respective values are the same for both metrics. In table 
4, the more diversified jobs based on mentioned metrics 
are described. About network metric Modularity class, 
network can be separated in 9 communities (Fig. 12).  
Respect to assortativity, the value obtained is 
Assortativity = -0.7061681, this means it has a 
dissociative behavior by high hubs nodes. Gini 
coefficient GN = 68.6 obtained from difference between 
weighted in and out degree, (distribution is shown in Fig. 
13), shows an extremely high value. We assumed two 
main reasons for such a high GN value. (real one for 2014 
GN=45.8), first sample size is not big enough for 
calculating real income distribution and there are three 
nodes with a weighted in degree around MXN 360 
million a year. But it is able by this technique to 
manipulate nodes structure to get more insight  

Figure 5: Node degree distribution dot plot. Inside 
frames indicate node degree of the more connected 

nodes of the 3 nodes categories.  
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Figure 6: Histogram of node degrees 

Figure 7: Node degree distribution bar-plot showing all 
nodes categories, except the 8 expenses category with an 
potential fit. Inside frames indicate the most connected 
node corresponding to the productive subsector and the 
most connected job/occupation category node. Red dot 
line correspond to a power law fitting and corresponding 
empirical calculated model with Pearson R2 coefficient 
is showed in up right inside frame. 

Figure 8: Weighted degree distribution plot. Node with 
highest degree corresponds to productive subsector 
“education supporting services” with a node weighted 
degree of 36080309.98.  

Figure 9: Column plot for weighted In-degree by 
Expenses (base year 2014).   

Figure 10: Distribution of weighted in-degree by 
jobs/occupations category nodes in horizontal axis. A 
Power-Law distribution fit was performed, and empirical 
equation is shown in upper-right frame. 

Figure 11:  Eigencentrality vs jobs/occupation category 
nodes plot. Power-Law is fitted with an determinant 
coefficient of 00.84 is  obtained.  

Table 4: description of the 6 more diversified jobs 
Node Code Job description 

9621 general cleaner and sweeper (except for 
hotels and restaurants) 

2512 auxiliary in accounting economics 
finance and stockbrokers assistants 

3115 Support workers in various 
administrative activities 

3111 Secretaries 

2511 Auxiliary in administration, marketing, 
marketing and foreign trade 

5313 Vigilant and guards in establishments 

Figure 12: Matrix plot of degree and eigencentrality as 
horizontal exes and strong, modularity and weighted 

degree for vertical axis.  

General Public 
administration,  Node 

degree=143 9621= cleaning 
assistants(excpets in hotels 

and reataurants)  , node 
degree =101

y = 834.61x-0.703

R² = 0.852
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Figure 13: right plot shows weighted in-degree 
histogram. In right frame shows histogram of the 
difference between weighted in and out degree by 

job/occupation category nodes. 

4.2. Simulation results 
The simulation is performed changing weights of 
Jobs/occupations Category → Expenses edges for  years 
2015-2018. The outcomes’ analysis are focused only in 
weighted degree distribution, weighted in-degree 
distribution and estimation of Gini coefficient. This 
because other metrics won´t change significantly. 
Results are summarized in Table 5. In Fig. 15 the annual 
weighted degree variation for years 2014-2018 is shown, 
it can be observed that the food category is more 
significant but transport presents more variation through 
selected years.  

Year       
Result 

End 
2014 

End 
2015 

End 
2016 

End 
2017 

End 
2018 

Gini Coefficient 68.6 72.6 63.54 63.52 63.54 

Variation % 5.38 -12.48 -0.031 0.031 

Figure 14:Estimated Gini coefficient from 2014-2016 

Figure 15: Simulation results for Weighted degree 
variation when inflation rate was introduced.  

4.3. Validation 
Our results are validated trough the variation of Gini 
Coefficient, for corresponding years. It has to be noticed 
that there is no information available about years 2015 

and from 2017 to date. As mentioned, our results have an 
estimation error of about 49 % in some years, but this can 
be due to lack of data, and we are only considering the 
analysis of jobs/occupations category. A further analysis 
using productive subsector should be improved. 
Behavior of Gini coefficient responds to shape observed 
by variation from 2014 to 2016. Our results can be 
applied to study system’s behavior.   

2000 2002 2004 2005 2006 2008 2010 2012 2014 2016 

51.40 49.00 48.30 48.90 47.70 44.60 45.30 45.40 45.80 43.40 

5.54% -4.67% -1.43% 1.24% -2.45% -6.50% 1.57% 0.22% 0.88% -5.24% 

Figure 16: Gini Coefficient values and behavior from 
years 2000 to 2016. Source INEGI.  

5. CONCLUSIONS
Our technique to analyze an economic system by 
Complex Network approach is suitable to interpret a 
complex system state, diversity of nodes can be tracked 
by its diversity of links. Simulation allows us to identify 
some of key nodes by categories, obtaining an estimated 
evolution of income distribution using Gini coefficient. 
A further Modularity metric scope would indicate 
evolution of system clusters, permitting to identify 
economic groups aiding to reinforce economic dynamic. 
Implementation of data mining approach can aid to get 
more insight of system, by tracking each node and its 
links. By means of presented method directed attacks or 
reinforcements of different occupations or jobs, or 
incentives by expenses or even aiding the design of 
economic policies directed to specific subsectors can be 
implemented. 
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