We introduce fast approximations by machine learning (FAML) to compute the energy of molecular systems. FAML can be six times faster than a traditional quantum chemistry approach for molecular geometry optimisation, at least for a simple dimer. Hardware accelerators for machine learning (ML) can further improve FAML’s performance. Since the quantum chemistry calculations show poor algorithmic scaling, faster methods that produce a similar level of accuracy to the more rigorous level of quantum theory are important. As a FAML proof-of-concept, we use a convolutional neural network (CNN) to make energy predictions on the F2 molecular dimer system. Training data for the CNN is computed using a quantum chemistry application (i.e., GAMESS) and represented as an image. Using fivefold cross-validation, we find that the predictions made by the CNN provide a good prediction to the theoretical calculations in a fraction of the time.