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ABSTRACT 
We introduce fast approximations by machine learning 
(FAML) to compute the energy of molecular systems. 
FAML can be six times faster than a traditional quantum 
chemistry approach for molecular geometry 
optimisation, at least for a simple dimer. Hardware 
accelerators for machine learning (ML) can further 
improve FAML’s performance. Since the quantum 
chemistry calculations show poor algorithmic scaling, 
faster methods that produce a similar level of accuracy to 
the more rigorous level of quantum theory are important. 

As a FAML proof-of-concept, we use a convolutional 
neural network (CNN) to make energy predictions on the 
F2 molecular dimer system. Training data for the CNN is 
computed using a quantum chemistry application 
(i.e., GAMESS) and represented as an image. Using five-
fold cross-validation, we find that the predictions made 
by the CNN provide a good prediction to the theoretical 
calculations in a fraction of the time.  

Keywords: fast approximation, machine learning, 
molecular geometry optimisation, quantum chemistry 

1. INTRODUCTION
Using the mathematical apparatus of quantum physics, 
quantum chemistry allows for the simulation of 
molecules, their properties, and chemical reactions in 
which they participate. From drug design to protein 
folding, the possibilities are vast.  However, it comes 
with a price tag which is computing time: the 
Schrödinger equation, which is at the core of quantum 
chemistry, cannot be solved analytically for any system 
containing more than one electron, so we must resort to 
using approximations. To make matters worse, these 
approximate methods are iterative, with no guarantee of 
them converging, and even when they do converge there 
is no guarantee that they have converged to the global 
minimum of the problem. By far the biggest roadblock is 
that even the least accurate of a truly quantum theory has 
a scaling rate of n4 (n can be loosely thought of as the size 
of a system, but it might perhaps be better thought of as 

how accurately we are describing a system). The most 
accurate level of theory, full configuration interaction, 
would take an infinite amount of time to compute the first 
iteration of its solution for just a single helium atom. 
Modern processors and graphics processing units 
(GPUs) have helped reduce computing time 
substantially, but we are still far away from describing 
large, asymmetrical systems like proteins at the quantum 
level in any reasonable amount of time. However, there 
might be a workaround.  

Machine-learning (ML) algorithms have been successful 
in classifying images with high accuracy (Krizhevsky, 
Sutskever, and Hinton 2012), learning the parameters of 
data network protocols (Sivaraman et al. 2014), and other 
tasks. The desire for ML performance has spawned 
specialized hardware (e.g., tensor processing units 
(TPUs) (Joupii et al. 2017)), representing another 
enticing technology curve for the high-performance 
computing (HPC) community. As such, it could be 
beneficial for quantum chemistry if it can make use of 
ML algorithms.  

Most computational quantum chemists are not interested 
in any arbitrary molecular geometry. They are usually 
only interested in regions around the most stable 
geometry, which is the one that minimizes the total 
energy (equal to the sum potential and kinetic energies) 
of the system. Once the most stable geometry has been 
found, work can begin on calculating other properties of 
interest. Algorithm 1 shows the pseudocode for this 
geometry optimizing process.  

We consider an atypical use of ML as part of this larger, 
generalized molecular geometry optimisation. Instead of 
using HPC to improve the ML implementation, we 
consider how ML can improve an HPC computation via 
fast approximations by machine learning (FAML). For 
example, computing the total energy of a molecule 
(i.e., lines 3 and 8, Algorithm 1) is both computationally 
expensive (Schmidt et al. 1993) and central to each 
iteration of the optimisation algorithm. Multiple cores 
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and general-purpose graphics processing units (GPGPU) 
(Schmidt et al. 1993; Abadi et al. 2015) can be used to 
accelerate the energy calculation, but we consider the use 
of neural networks as a different kind of accelerator.  

Algorithm 1: Generalized Molecular Geometry 
Optimisation, Pseudocode 
1. thresh = minimum change in total energy from one geometry

state to another 
2. current_geo = guess of optimal geometry 
3. current_energy = total energy of current_geo 
4. old_energy = 0 
5. 
6.  old_energy = current_energy 
7.  update current_geo based on derivative of the total energy

   with respect to the geometry  
8.  current_energy = total energy of current_geo 
9. end while
10. return current_energy, current_geo 

Attempts at this have already been made. von Lilienfeld 
et al. (Montavon et al. 2013) made a simple neural 
network composed of four hidden fully connected (FC) 
layers and used what they call a “Coulomb matrix” as its 
input. The Coulomb matrix is given by  

(1) 

where i and j refer to nuclei, Zi is the nuclear charge of 
nuclei i, and |Ri − Rj | is the distance between nuclei i and 
j. Their network makes predictions on 14 different
properties of the system in question. They trained on 
5,000 different molecules and tested on 2,211 molecules. 
The network was able to obtain an accuracy good enough 
for the predictions to be usable, and that is commendable. 
However it is worth pointing out that a network made 
only of FC layers is very simple, and a more complicated 
type of network could perform much better.  

As a proof-of-concept, we show that convolutional 
neural networks (CNNs) can be used to accurately 
predict the energy of a molecule with a specific 
geometry. The CNN-based FAML is six times faster than 
using a traditional quantum chemistry approach, at least 
for fluorine dimers (F2). Quantum chemistry algorithms 
are still used offline to create the training data for the 
CNN, training is offline, but when implemented in an 
actual geometry optimisation calculation, only the pre-
trained CNN would need to be used online.  

Currently, GPGPUs are used to both train and evaluate 
the CNNs. For future work, we plan to extend the current 
results to different dimers, and to larger molecules. Also, 
in theory, FAML makes it feasible to use specialized ML 
hardware (e.g., TPUs (Joupii et al. 2017)) for higher 
performance, especially since it is not known how 
quantum chemistry algorithms can be directly adapted to 
non-GPGPU accelerators.  

1.1. Convolutional Neural Networks (CNNs) 

CNNs (LeCun et al. 1989) are typically composed of 
three different layers: convolution layers, pooling layers, 
and FC layers. How these work on a more technical level 
can be a bit complex, so we will go over each layer 
individually, starting with the FC layers.  

1) FC Layers: An FC layer is really just a single layer
from a multilayer perceptron (Zupan and Gasteiger 1993) 
[8]. The vector of activations h for the FC hidden layer l 
is given by the following equation  

 (2) 

where Θl is a matrix of weights, bl is a vector of biases, 
and f is a non-linear function. While the sigmoid function 
f(x) = 1/(1 + e−x) was used extensively in the past, the 
rectified linear unit (ReLU) function is much more 
commonly used today. It is given in equation 3.  

  (3) 

The first derivative of a ReLU is 1 if x ≥ 0 and 0 
otherwise. This is far simpler than the first derivative of 
the sigmoid function, which helps greatly during the 
training process, especially with large CNNs.  

2) Convolutional Layers: The convolutional layers are
what allows a CNN to become so accurate. Instead of 
every neuron using all of the data from the previous 
layer, a neuron in a convolutional layer uses only a subset 
of the information from the previous layer. This is given 
mathematically by  

(4) 

where i and j are the coordinates of a neuron, m and n are 
the dimensions of the filter matrix, x = i-(m-1)/2+c, 
y = j-(n-1)/2+d (here we are assuming that m and n are 
odd), o is the number of features of the previous layer 
l−1, and f is the feature of the current layer l that we are 
solving for.  

3) Pooling: If we do not stride through the l−1 layer,
layer l will have the exact same dimensions as layer l−1. 
Typically, we compress the l layer in some way. The 
most common way of doing this is through pooling. This 
is where we look at one particular neuron and its 
neighbours and apply some function to them. If we took 
only the maximum value for a feature of one neuron and 
its neighbours, this would be max pooling. Another 
common way of doing this is average pooling. An 
example of pooling is as follows. After applying 
Equation 4, we are left with output that has dimensions 
of 28 × 28 × 3. For a pooling window of 2 × 2 and for the 
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first feature, we would look at the data in ℎ","
$,% , ℎ%,"

$,% , ℎ",%
$,% , 

and ℎ%,%
$,%  (notice how pooling is done with respect to a 

single feature, so we would have to do three different 
pooling operations for each where i and j coordinates). 
In max pooling, we would take the maximum value for 
these data points, and this would become the value of 
ℎ","
$&,%where lp is the pooled layer of layer l.  We would 

stride through the un-pooled layer in steps equal to the 
dimension of the pooling window (so ℎ",%

$&,%would be the 
max of ℎ",'

$,% , ℎ%,'
$,% , ℎ",(

$,% , and ℎ%,(
$,%   and so on) until we have 

gone through the whole of layer l. The output of this 
pooling operation would compress the input by a factor 
of four, so the output would have dimensions of 14 × 14 
× 3. 

Pooling can be thought of as “summarizing” the features 
of each group of neurons. This allows for layers to 
specialize the kind of features they look for, and also 
allows for deeper layers to look for more complex 
features without needing to greatly expand the window 
they look at. For instance, the first layer of a CNN might 
only look for curves and straight lines, the next layer 
might look for basic shapes like circles, squares, and 
triangles, and the deepest layers would look for things 
like faces and other objects.  

2. METHODS
The overall goal of this work is to make a CNN that can 
accurately predict properties of a chemical system. As a 
first step, we designed a CNN that can predict the total 
energy of the system, the kinetic energy of the electrons, 
the potential energy of attraction between electrons and 
nuclei, the potential energy of repulsion between 
electrons, and the potential energy of repulsion between 
nuclei. We chose these because optimizing the geometry 
of a chemical system requires finding a molecular 
geometry (i.e., coordinates of atoms in a molecule) where 
the total energy is at a minimum. This adds a further layer 
of iterative calculations to an already computationally 
difficult task and it would be good if there was a method 
of placing atoms in sensible locations beforehand. 
Because CNNs work best at image recognition, we need 
some way to turn a molecule into something that 
resembles an image. We achieve this in the following 
way.  

2.1. Digitizing Chemical Space 
First, we begin by choosing the size of the dimensions of 
the image to be 512 × 512 × 3. Each pixel of the image 
represents a (0.01Å)2 area of space. Note that this 
restricts us to two-dimensional chemical systems. An 
area of (0.01Å)2 was chosen because changes in 
molecular geometry smaller than this do not have a 
strong impact on the properties we want to predict. An 
image size of 512 × 512 was chosen because this gives 
us enough room to dissociate dimers, and also to 
optimize performance on GPUs.  

At a simple level, the energy of a molecular system is a 
function of the nuclear charges present, and the 

coordinates in space that the nuclei occupy. Everything 
else can be derived from just these inputs. Because of 
this, the features of a pixel should at least include the 
nuclear charge of the nuclei occupying that pixel. For a 
dimer system, this would produce an image that is 
completely black except for two white pixels. Even 
though in theory this should be all that is needed, we are 
not giving the CNN much to work with. Therefore, we 
decided to include some additional information to help 
point the CNN in the right direction.  

We thought that it might be helpful to include some 
information about the attractive and repulsive forces. We 
did this by including a simplified version of the bonding 
orbital that would form between the 1s electrons in the 
system, as well the anti-bonding orbital that would form. 
These were calculated from Gaussian type orbitals, given 
by the following equations  

 (5) 

 (6) 

where 𝐼*,+,, is the xth channel of the pixel at i,j, n is the 
number of nuclei in the system, 𝑟*+  is the distance of the 
pixel i,j, from nuclei k, and Nk is a normalization constant 
that satisfies  

  (7) 

An example of what these images look like is shown in 
Fig. 1.  

Figure 1:  The image produced by the Equations 5, 6, 
and 7. The atoms are F. The green channel is assigned 
Equation 5, the blue channel is assigned Equation 6, and 
the red channel is assigned the Z of the nuclei. Note that 
the image has been normalized such that the maximum 
value of any channel is 255 and the minimum is 0.  
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As for the actual training data, we use the results of 
GAMESS (Schmidt et al. 1993) calculations at the 
CASSCF (Siegbahn et al. 1981; Roos, Taylor, and 
Siegbahn 1980; Siegbahn et al. 1980) level of theory and 
the 6-311+G(2d,2p) basis set (Krishnan et al. 1980; 
Clark et al. 1983; Frisch, Pople, and Binkley 1984) on F2 
dimers. The dimers have randomly generated 
coordinates, so we can be reasonably sure that there are 
no exact duplicates.  

2.2. CNN Architecture 
As mentioned, the input layer for our CNN has 
dimensions of 512 × 512 × 3. We chose a filter with 
dimensions of 5 × 5 for each hidden layer. The first 
hidden layer takes in the 3 channels from the input layer, 
and outputs 32 new features. The value of 32 was chosen 
for optimisation of the calculations on GPUs. The first 
hidden layer will have 5×5×3×32 weights and 32 biases. 
The output of this layer goes through an average pooling 
operation with a 2 × 2 window and a stride of 2. The 
output after pooling has dimensions of 256×256×32. 
Because spatial information is so important to these 
calculations, each subsequent layer pulls out twice the 
number of features than the layer before it, in the hopes 
that this will preserve enough of the information that 
would get compressed by pooling. In total, there are five 
convolutional layers and five average pooling operations. 
The output of the last layer has dimensions of 16 × 16 × 
512. This then gets reshaped into a vector with 131072 
dimensions, and then goes through the FC layers. There 
are two FC layers, the first has a weight matrix with 
dimensions of 131072 × 2048, and the second has 
dimensions of 2048 × 2048.  

In a preliminary study (unpublished), we found that the 
predictions of total energy were more accurate if we also 
trained the CNN to predict the electron kinetic energy, 
the electron-electron repulsion potential energy, the 
electron-nuclei attraction potential energy, and the 
nucleus-nucleus repulsion potential energy at the same 
time. Therefore, the output layer has a weight matrix with 
dimension of 2048 × 5 and the outputs are the five energy 
types just described. ReLUs are used for all layers except 
the output layer, which uses no activation function. A 
dropout of 50% is also included between the two FC 
layers, and the output.  

2.3. Initialization and Training 
The weights and biases are initialized with random 
numbers from a normal distribution with zero mean and 
a standard deviation of 0.1. We use the mean absolute 
error (MAE) as the error function, and we optimize the 
error using the Adam optimisation algorithm (Kingma 
and Ba 2014) and a batch size of 32. We performed some 
initial calculations using 80% of the data to train on and 
the remaining 20% for testing. We used 5 fold cross-
validation for more in-depth experiments. Each fold was 
constructed by sorting the data by distance between 
dimers, and then distributing them to each fold round-
robin style.  

3. EMPIRICAL RESULTS AND DISCUSSION
We generated 100,000 systems ranging in distance from 
1.00Å−7.24Å.  We found that the energy was skewed in 
favour of the lower energies, so we added approximately 
90,000 more examples that ranged from 1.00Å−1.50Å.  
We then normalized the energies with the following 
equation 

  (8) 

where e′ is the normalized value of energy e, and emax and 
emin are the maximum and minimum values for the 
energies of the same type as e. This uniformly scales all 
energies of the same type between zero and one. This 
helps to reduce the training time, as the CNN does not 
have to spend as much time trying to find the range of the 
data. Even so, it can take as long as approximately 40 
hours to complete 14 epochs for the F2 CNN. The results 
of training for over 14 epochs are given in Table 1. 

We can see that the results between folds are all similar. 
The largest deviations for each energy type is given in 
Table 2. Scatter plots showing how the predictions line 
up with their actual values, as well as how the predictions 
match up to the energy curves are in Figures 2 and 3.  

Table 1:  The MAE when predicting the total energy 
(TE), the kinetic energy of electrons (EKE), the potential 
energy of attraction between electrons and nuclei 
(ENPE), the potential energy of repulsion between 
electrons (EEPE), and the potential energy of repulsion 
between nuclei (NNPE) of a F2 dimer. Energy is given in 
Hartree units.  Folds 0 to 2 had 37,896 images.  Folds 3 
and 4 had 37,895 images. 

Fold TE EKE ENPE EEPE NNPE 
0 0.00177 0.0118 0.449 0.207 0.213 
1 0.00141 0.0093 0.287 0.163 0.178 
2 0.00138 0.0097 0.345 0.219 0.220 
3 0.00143 0.0100 0.283 0.209 0.200 
4 0.00171 0.0116 0.438 0.195 0.220 
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Table 2:  Largest absolute deviations (LAD) for the 
predictions of the total energy (TE), the kinetic energy of 
electrons (EKE), the potential energy of attraction 
between electrons and nuclei (ENPE), the potential 
energy of repulsion between electrons (EEPE), and the 
potential energy of repulsion between nuclei (NNPE) of 
a F2 dimer. Energy is given in Hartree units. Distances 
are given in Å. 

Energy 
Type LAD Actual Energy 

of LAD 
Distance of 

LAD 
TE 0.0621 -198.534 1.0008 
EKE 0.3181 200.631 1.0024 
ENPE 3.2617 -560.249 1.0309 
EEPE 2.0255 120.571 1.0066 
NNPE 2.2541 42.581 1.0066 

Finally, we discuss how the CNN is six times faster than 
GAMESS in predicting the energy of the dimer 
molecule. As there is a reduction in the accuracy, there 
would be little point in using this method if the 
predictions took longer than using the actual GAMESS 
program. To make a prediction, the image must first be 
generated, then the image must be converted into a form 
TensorFlow can use, and then the data must flow through 
the CNN.  

For the nearly 190,000 molecules used in our 
experiment, the average time for generating the images 
is 0.068s per image, the average time for converting the 
data for TensorFlow is 0.117s per image, and the average 
time for running the data through the CNN is 0.028s per 
image. This gives a total time of 0.213s per image. The 
average time per F2 calculation using GAMESS is 
1.227s. This means that the CNN is almost six times 
faster. It is also worth pointing out that for anything that 
will fit into the dimensions of the image we use should 
require approximately the same amount of time for the 
CNN to predict, while the time need to calculate larger 
systems will increase dramatically.  

4. CONCLUDING REMARKS
The HPC, ML, and computational science communities 
are interacting in a variety of interesting ways. First, 
well-known HPC techniques such as GPGPUs and 
specialized hardware are improving the performance of 
ML and scientific computations. Second, ML techniques 
such as the fast approximations by machine learning 
(FAML) strategy introduced here, can potentially replace 
an expensive computation (e.g., quantum chemistry) 
with a faster ML computation, and stay within acceptable 
limits of accuracy and error. Using FAML for molecular 
geometry optimisation (Algorithm 1), the expensive 
quantum chemistry calculation can be done offline, the 
ML training can be done offline, so that the cheaper CNN 
evaluation is all that is done online. Third, FAML 
provides (in theory) a feasible way to take advantage of 
a technology trend towards specialized hardware for ML 
(e.g., TPUs (Joupii et al. 2017)) that is less obvious for, 
say, traditional computational quantum chemistry 
algorithms. Opportunities to exploit these interactions 

may provide significant performance benefits, such as 
the six-fold increase in performance of the CNN-based 
FAML, for a dimer.  

While this study is mostly a proof-of-concept, its 
findings are promising. We have shown that CNNs offer 
a viable method of shortening the time needed to predict 
the energy of a simple molecular system. The predictions 
made by our CNN have an average of only 0.001 MAE 
with respect to calculations performed by GAMESS, and 
are also much faster to obtain. We have shown that we 
can increase the accuracy of predictions by 
simultaneously making predictions of related data. We 
have also shown that generating the training data by 
randomly generating geometries of molecular systems is 
valid, so long as the level of theory can dynamically 
describe the breaking of electron pairs.  

In a future study, we will design a CNN that is able to 
make predictions about dimers with different atoms. It 
would also be interesting to see if the CNN can make 
accurate predictions about molecules it has never seen 
before. For instance, we might train the CNN on the 
molecules H2, F2, Cl2, FCl, and HF, and then see if the 
CNN can accurately make predictions on HCl, which is 
outside of the training set. Finally, we plan on 
empirically evaluating a CNN-based FAML in an actual, 
end-to-end, molecular geometry optimisation 
computation.  
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Figure 2:  Scatter plots made from the predictions of the total energy (a), kinetic energy (b), electron-nuclei potential 
energy (c), electron-electron potential energy (d), and nuclei-nuclei potential energy (e). Results from all folds for the F2 
CNN are shown. Energies are given in Hartree units. The black diagonal line in each plot shows where perfect predictions 
lie. The green line shows the range of predictions that fall within the MAE. The red line shows the range of predictions 
that fall within the largest error.  

(a)   (b) 

(c)  (d) 

(e)

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

224



Figure 3:  The predictions of the energy curves as a function of the distance between dimers for the total energy (a), kinetic 
energy (b), electron-nuclei potential energy (c), electron-electron potential energy (d), and nuclei-nuclei potential energy 
(e). Results from all folds for the F2	CNN are shown. Energies are given in Hartree units and distances are given in Å. The 
black points in each plot show where perfect predictions lie. The green points show the range of predictions that fall within 
the MAE. The red points show the range of predictions that fall within the largest error.  
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