
FAST APPROXIMATIONS BY MACHINE LEARNING:
PREDICTING THE ENERGY OF DIMERS

USING CONVOLUTIONAL NEURAL NETWORKS

Dylan Hennessey(a), Mariusz Klobukowski(b), Paul Lu(c)

(a)Department of Medicine
(b)Department of Chemistry

(c)Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada

(a)dhenness@ualberta.ca, (b)mariusz.klobukowski@ualberta.ca, (c)paullu@ualberta.ca

ABSTRACT
We introduce fast approximations by machine learning
(FAML) to compute the energy of molecular systems.
FAML can be six times faster than a traditional quantum
chemistry approach for molecular geometry
optimisation, at least for a simple dimer. Hardware
accelerators for machine learning (ML) can further
improve FAML’s performance. Since the quantum
chemistry calculations show poor algorithmic scaling,
faster methods that produce a similar level of accuracy to
the more rigorous level of quantum theory are important.

As a FAML proof-of-concept, we use a convolutional
neural network (CNN) to make energy predictions on the
F2 molecular dimer system. Training data for the CNN is
computed using a quantum chemistry application
(i.e., GAMESS) and represented as an image. Using five-
fold cross-validation, we find that the predictions made
by the CNN provide a good prediction to the theoretical
calculations in a fraction of the time.

Keywords: fast approximation, machine learning,
molecular geometry optimisation, quantum chemistry

1. INTRODUCTION
Using the mathematical apparatus of quantum physics,
quantum chemistry allows for the simulation of
molecules, their properties, and chemical reactions in
which they participate. From drug design to protein
folding, the possibilities are vast. However, it comes
with a price tag which is computing time: the
Schrödinger equation, which is at the core of quantum
chemistry, cannot be solved analytically for any system
containing more than one electron, so we must resort to
using approximations. To make matters worse, these
approximate methods are iterative, with no guarantee of
them converging, and even when they do converge there
is no guarantee that they have converged to the global
minimum of the problem. By far the biggest roadblock is
that even the least accurate of a truly quantum theory has
a scaling rate of n4 (n can be loosely thought of as the size
of a system, but it might perhaps be better thought of as

how accurately we are describing a system). The most
accurate level of theory, full configuration interaction,
would take an infinite amount of time to compute the first
iteration of its solution for just a single helium atom.
Modern processors and graphics processing units
(GPUs) have helped reduce computing time
substantially, but we are still far away from describing
large, asymmetrical systems like proteins at the quantum
level in any reasonable amount of time. However, there
might be a workaround.

Machine-learning (ML) algorithms have been successful
in classifying images with high accuracy (Krizhevsky,
Sutskever, and Hinton 2012), learning the parameters of
data network protocols (Sivaraman et al. 2014), and other
tasks. The desire for ML performance has spawned
specialized hardware (e.g., tensor processing units
(TPUs) (Joupii et al. 2017)), representing another
enticing technology curve for the high-performance
computing (HPC) community. As such, it could be
beneficial for quantum chemistry if it can make use of
ML algorithms.

Most computational quantum chemists are not interested
in any arbitrary molecular geometry. They are usually
only interested in regions around the most stable
geometry, which is the one that minimizes the total
energy (equal to the sum potential and kinetic energies)
of the system. Once the most stable geometry has been
found, work can begin on calculating other properties of
interest. Algorithm 1 shows the pseudocode for this
geometry optimizing process.

We consider an atypical use of ML as part of this larger,
generalized molecular geometry optimisation. Instead of
using HPC to improve the ML implementation, we
consider how ML can improve an HPC computation via
fast approximations by machine learning (FAML). For
example, computing the total energy of a molecule
(i.e., lines 3 and 8, Algorithm 1) is both computationally
expensive (Schmidt et al. 1993) and central to each
iteration of the optimisation algorithm. Multiple cores

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

218

DOI: https://doi.org/10.46354/i3m.2019.emss.031

and general-purpose graphics processing units (GPGPU)
(Schmidt et al. 1993; Abadi et al. 2015) can be used to
accelerate the energy calculation, but we consider the use
of neural networks as a different kind of accelerator.

Algorithm 1: Generalized Molecular Geometry
Optimisation, Pseudocode
1. thresh = minimum change in total energy from one geometry

state to another
2. current_geo = guess of optimal geometry
3. current_energy = total energy of current_geo
4. old_energy = 0
5.
6. old_energy = current_energy
7. update current_geo based on derivative of the total energy

 with respect to the geometry
8. current_energy = total energy of current_geo
9. end while
10. return current_energy, current_geo

Attempts at this have already been made. von Lilienfeld
et al. (Montavon et al. 2013) made a simple neural
network composed of four hidden fully connected (FC)
layers and used what they call a “Coulomb matrix” as its
input. The Coulomb matrix is given by

(1)

where i and j refer to nuclei, Zi is the nuclear charge of
nuclei i, and |Ri − Rj | is the distance between nuclei i and
j. Their network makes predictions on 14 different
properties of the system in question. They trained on
5,000 different molecules and tested on 2,211 molecules.
The network was able to obtain an accuracy good enough
for the predictions to be usable, and that is commendable.
However it is worth pointing out that a network made
only of FC layers is very simple, and a more complicated
type of network could perform much better.

As a proof-of-concept, we show that convolutional
neural networks (CNNs) can be used to accurately
predict the energy of a molecule with a specific
geometry. The CNN-based FAML is six times faster than
using a traditional quantum chemistry approach, at least
for fluorine dimers (F2). Quantum chemistry algorithms
are still used offline to create the training data for the
CNN, training is offline, but when implemented in an
actual geometry optimisation calculation, only the pre-
trained CNN would need to be used online.

Currently, GPGPUs are used to both train and evaluate
the CNNs. For future work, we plan to extend the current
results to different dimers, and to larger molecules. Also,
in theory, FAML makes it feasible to use specialized ML
hardware (e.g., TPUs (Joupii et al. 2017)) for higher
performance, especially since it is not known how
quantum chemistry algorithms can be directly adapted to
non-GPGPU accelerators.

1.1. Convolutional Neural Networks (CNNs)

CNNs (LeCun et al. 1989) are typically composed of
three different layers: convolution layers, pooling layers,
and FC layers. How these work on a more technical level
can be a bit complex, so we will go over each layer
individually, starting with the FC layers.

1) FC Layers: An FC layer is really just a single layer
from a multilayer perceptron (Zupan and Gasteiger 1993)
[8]. The vector of activations h for the FC hidden layer l
is given by the following equation

 (2)

where Θl is a matrix of weights, bl is a vector of biases,
and f is a non-linear function. While the sigmoid function
f(x) = 1/(1 + e−x) was used extensively in the past, the
rectified linear unit (ReLU) function is much more
commonly used today. It is given in equation 3.

 (3)

The first derivative of a ReLU is 1 if x ≥ 0 and 0
otherwise. This is far simpler than the first derivative of
the sigmoid function, which helps greatly during the
training process, especially with large CNNs.

2) Convolutional Layers: The convolutional layers are
what allows a CNN to become so accurate. Instead of
every neuron using all of the data from the previous
layer, a neuron in a convolutional layer uses only a subset
of the information from the previous layer. This is given
mathematically by

(4)

where i and j are the coordinates of a neuron, m and n are
the dimensions of the filter matrix, x = i-(m-1)/2+c,
y = j-(n-1)/2+d (here we are assuming that m and n are
odd), o is the number of features of the previous layer
l−1, and f is the feature of the current layer l that we are
solving for.

3) Pooling: If we do not stride through the l−1 layer,
layer l will have the exact same dimensions as layer l−1.
Typically, we compress the l layer in some way. The
most common way of doing this is through pooling. This
is where we look at one particular neuron and its
neighbours and apply some function to them. If we took
only the maximum value for a feature of one neuron and
its neighbours, this would be max pooling. Another
common way of doing this is average pooling. An
example of pooling is as follows. After applying
Equation 4, we are left with output that has dimensions
of 28 × 28 × 3. For a pooling window of 2 × 2 and for the

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

219

first feature, we would look at the data in ℎ","
$,% , ℎ%,"

$,% , ℎ",%
$,% ,

and ℎ%,%
$,% (notice how pooling is done with respect to a

single feature, so we would have to do three different
pooling operations for each where i and j coordinates).
In max pooling, we would take the maximum value for
these data points, and this would become the value of
ℎ","
$&,%where lp is the pooled layer of layer l. We would

stride through the un-pooled layer in steps equal to the
dimension of the pooling window (so ℎ",%

$&,%would be the
max of ℎ",'

$,% , ℎ%,'
$,% , ℎ",(

$,% , and ℎ%,(
$,% and so on) until we have

gone through the whole of layer l. The output of this
pooling operation would compress the input by a factor
of four, so the output would have dimensions of 14 × 14
× 3.

Pooling can be thought of as “summarizing” the features
of each group of neurons. This allows for layers to
specialize the kind of features they look for, and also
allows for deeper layers to look for more complex
features without needing to greatly expand the window
they look at. For instance, the first layer of a CNN might
only look for curves and straight lines, the next layer
might look for basic shapes like circles, squares, and
triangles, and the deepest layers would look for things
like faces and other objects.

2. METHODS
The overall goal of this work is to make a CNN that can
accurately predict properties of a chemical system. As a
first step, we designed a CNN that can predict the total
energy of the system, the kinetic energy of the electrons,
the potential energy of attraction between electrons and
nuclei, the potential energy of repulsion between
electrons, and the potential energy of repulsion between
nuclei. We chose these because optimizing the geometry
of a chemical system requires finding a molecular
geometry (i.e., coordinates of atoms in a molecule) where
the total energy is at a minimum. This adds a further layer
of iterative calculations to an already computationally
difficult task and it would be good if there was a method
of placing atoms in sensible locations beforehand.
Because CNNs work best at image recognition, we need
some way to turn a molecule into something that
resembles an image. We achieve this in the following
way.

2.1. Digitizing Chemical Space
First, we begin by choosing the size of the dimensions of
the image to be 512 × 512 × 3. Each pixel of the image
represents a (0.01Å)2 area of space. Note that this
restricts us to two-dimensional chemical systems. An
area of (0.01Å)2 was chosen because changes in
molecular geometry smaller than this do not have a
strong impact on the properties we want to predict. An
image size of 512 × 512 was chosen because this gives
us enough room to dissociate dimers, and also to
optimize performance on GPUs.

At a simple level, the energy of a molecular system is a
function of the nuclear charges present, and the

coordinates in space that the nuclei occupy. Everything
else can be derived from just these inputs. Because of
this, the features of a pixel should at least include the
nuclear charge of the nuclei occupying that pixel. For a
dimer system, this would produce an image that is
completely black except for two white pixels. Even
though in theory this should be all that is needed, we are
not giving the CNN much to work with. Therefore, we
decided to include some additional information to help
point the CNN in the right direction.

We thought that it might be helpful to include some
information about the attractive and repulsive forces. We
did this by including a simplified version of the bonding
orbital that would form between the 1s electrons in the
system, as well the anti-bonding orbital that would form.
These were calculated from Gaussian type orbitals, given
by the following equations

 (5)

 (6)

where 𝐼*,+,, is the xth channel of the pixel at i,j, n is the
number of nuclei in the system, 𝑟*+ is the distance of the
pixel i,j, from nuclei k, and Nk is a normalization constant
that satisfies

 (7)

An example of what these images look like is shown in
Fig. 1.

Figure 1: The image produced by the Equations 5, 6,
and 7. The atoms are F. The green channel is assigned
Equation 5, the blue channel is assigned Equation 6, and
the red channel is assigned the Z of the nuclei. Note that
the image has been normalized such that the maximum
value of any channel is 255 and the minimum is 0.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

220

As for the actual training data, we use the results of
GAMESS (Schmidt et al. 1993) calculations at the
CASSCF (Siegbahn et al. 1981; Roos, Taylor, and
Siegbahn 1980; Siegbahn et al. 1980) level of theory and
the 6-311+G(2d,2p) basis set (Krishnan et al. 1980;
Clark et al. 1983; Frisch, Pople, and Binkley 1984) on F2
dimers. The dimers have randomly generated
coordinates, so we can be reasonably sure that there are
no exact duplicates.

2.2. CNN Architecture
As mentioned, the input layer for our CNN has
dimensions of 512 × 512 × 3. We chose a filter with
dimensions of 5 × 5 for each hidden layer. The first
hidden layer takes in the 3 channels from the input layer,
and outputs 32 new features. The value of 32 was chosen
for optimisation of the calculations on GPUs. The first
hidden layer will have 5×5×3×32 weights and 32 biases.
The output of this layer goes through an average pooling
operation with a 2 × 2 window and a stride of 2. The
output after pooling has dimensions of 256×256×32.
Because spatial information is so important to these
calculations, each subsequent layer pulls out twice the
number of features than the layer before it, in the hopes
that this will preserve enough of the information that
would get compressed by pooling. In total, there are five
convolutional layers and five average pooling operations.
The output of the last layer has dimensions of 16 × 16 ×
512. This then gets reshaped into a vector with 131072
dimensions, and then goes through the FC layers. There
are two FC layers, the first has a weight matrix with
dimensions of 131072 × 2048, and the second has
dimensions of 2048 × 2048.

In a preliminary study (unpublished), we found that the
predictions of total energy were more accurate if we also
trained the CNN to predict the electron kinetic energy,
the electron-electron repulsion potential energy, the
electron-nuclei attraction potential energy, and the
nucleus-nucleus repulsion potential energy at the same
time. Therefore, the output layer has a weight matrix with
dimension of 2048 × 5 and the outputs are the five energy
types just described. ReLUs are used for all layers except
the output layer, which uses no activation function. A
dropout of 50% is also included between the two FC
layers, and the output.

2.3. Initialization and Training
The weights and biases are initialized with random
numbers from a normal distribution with zero mean and
a standard deviation of 0.1. We use the mean absolute
error (MAE) as the error function, and we optimize the
error using the Adam optimisation algorithm (Kingma
and Ba 2014) and a batch size of 32. We performed some
initial calculations using 80% of the data to train on and
the remaining 20% for testing. We used 5 fold cross-
validation for more in-depth experiments. Each fold was
constructed by sorting the data by distance between
dimers, and then distributing them to each fold round-
robin style.

3. EMPIRICAL RESULTS AND DISCUSSION
We generated 100,000 systems ranging in distance from
1.00Å−7.24Å. We found that the energy was skewed in
favour of the lower energies, so we added approximately
90,000 more examples that ranged from 1.00Å−1.50Å.
We then normalized the energies with the following
equation

 (8)

where e′ is the normalized value of energy e, and emax and
emin are the maximum and minimum values for the
energies of the same type as e. This uniformly scales all
energies of the same type between zero and one. This
helps to reduce the training time, as the CNN does not
have to spend as much time trying to find the range of the
data. Even so, it can take as long as approximately 40
hours to complete 14 epochs for the F2 CNN. The results
of training for over 14 epochs are given in Table 1.

We can see that the results between folds are all similar.
The largest deviations for each energy type is given in
Table 2. Scatter plots showing how the predictions line
up with their actual values, as well as how the predictions
match up to the energy curves are in Figures 2 and 3.

Table 1: The MAE when predicting the total energy
(TE), the kinetic energy of electrons (EKE), the potential
energy of attraction between electrons and nuclei
(ENPE), the potential energy of repulsion between
electrons (EEPE), and the potential energy of repulsion
between nuclei (NNPE) of a F2 dimer. Energy is given in
Hartree units. Folds 0 to 2 had 37,896 images. Folds 3
and 4 had 37,895 images.

Fold TE EKE ENPE EEPE NNPE
0 0.00177 0.0118 0.449 0.207 0.213
1 0.00141 0.0093 0.287 0.163 0.178
2 0.00138 0.0097 0.345 0.219 0.220
3 0.00143 0.0100 0.283 0.209 0.200
4 0.00171 0.0116 0.438 0.195 0.220

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

221

Table 2: Largest absolute deviations (LAD) for the
predictions of the total energy (TE), the kinetic energy of
electrons (EKE), the potential energy of attraction
between electrons and nuclei (ENPE), the potential
energy of repulsion between electrons (EEPE), and the
potential energy of repulsion between nuclei (NNPE) of
a F2 dimer. Energy is given in Hartree units. Distances
are given in Å.

Energy
Type LAD Actual Energy

of LAD
Distance of

LAD
TE 0.0621 -198.534 1.0008
EKE 0.3181 200.631 1.0024
ENPE 3.2617 -560.249 1.0309
EEPE 2.0255 120.571 1.0066
NNPE 2.2541 42.581 1.0066

Finally, we discuss how the CNN is six times faster than
GAMESS in predicting the energy of the dimer
molecule. As there is a reduction in the accuracy, there
would be little point in using this method if the
predictions took longer than using the actual GAMESS
program. To make a prediction, the image must first be
generated, then the image must be converted into a form
TensorFlow can use, and then the data must flow through
the CNN.

For the nearly 190,000 molecules used in our
experiment, the average time for generating the images
is 0.068s per image, the average time for converting the
data for TensorFlow is 0.117s per image, and the average
time for running the data through the CNN is 0.028s per
image. This gives a total time of 0.213s per image. The
average time per F2 calculation using GAMESS is
1.227s. This means that the CNN is almost six times
faster. It is also worth pointing out that for anything that
will fit into the dimensions of the image we use should
require approximately the same amount of time for the
CNN to predict, while the time need to calculate larger
systems will increase dramatically.

4. CONCLUDING REMARKS
The HPC, ML, and computational science communities
are interacting in a variety of interesting ways. First,
well-known HPC techniques such as GPGPUs and
specialized hardware are improving the performance of
ML and scientific computations. Second, ML techniques
such as the fast approximations by machine learning
(FAML) strategy introduced here, can potentially replace
an expensive computation (e.g., quantum chemistry)
with a faster ML computation, and stay within acceptable
limits of accuracy and error. Using FAML for molecular
geometry optimisation (Algorithm 1), the expensive
quantum chemistry calculation can be done offline, the
ML training can be done offline, so that the cheaper CNN
evaluation is all that is done online. Third, FAML
provides (in theory) a feasible way to take advantage of
a technology trend towards specialized hardware for ML
(e.g., TPUs (Joupii et al. 2017)) that is less obvious for,
say, traditional computational quantum chemistry
algorithms. Opportunities to exploit these interactions

may provide significant performance benefits, such as
the six-fold increase in performance of the CNN-based
FAML, for a dimer.

While this study is mostly a proof-of-concept, its
findings are promising. We have shown that CNNs offer
a viable method of shortening the time needed to predict
the energy of a simple molecular system. The predictions
made by our CNN have an average of only 0.001 MAE
with respect to calculations performed by GAMESS, and
are also much faster to obtain. We have shown that we
can increase the accuracy of predictions by
simultaneously making predictions of related data. We
have also shown that generating the training data by
randomly generating geometries of molecular systems is
valid, so long as the level of theory can dynamically
describe the breaking of electron pairs.

In a future study, we will design a CNN that is able to
make predictions about dimers with different atoms. It
would also be interesting to see if the CNN can make
accurate predictions about molecules it has never seen
before. For instance, we might train the CNN on the
molecules H2, F2, Cl2, FCl, and HF, and then see if the
CNN can accurately make predictions on HCl, which is
outside of the training set. Finally, we plan on
empirically evaluating a CNN-based FAML in an actual,
end-to-end, molecular geometry optimisation
computation.

ACKNOWLEDGMENTS
This research was funded by the University of Alberta
and Natural Sciences and Engineering Research Council
(NSERC) of Canada. The NSERC Discovery Grants to
Mariusz Klobukowski and Paul Lu are gratefully
acknowledged. This research was enabled in part by
support provided by Compute Canada
(http://www.computecanada.ca).

REFERENCES
Abadi M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G.S. Corrado, A. Davis, J. Dean, M.
Devin, S. Ghemawat, I. Goodfellow, A. Harp, G.
Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga, S.
Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.
Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015,
software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

Clark T., J. Chandrasekhar, G. Spitznagel, and P.V.
Schleyer, “Efficient diffuse function-augmented
basis sets for anion calculations. III. The 3-21+G
basis set for first-row elements, Li–F,” J. Comp.
Chem., vol. 4, pp. 294–301, 1983.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

222

Frisch M.J., J.A. Pople, and J. Binkley, “Self-consistent
molecular orbital methods 25. Supplementary
functions for Gaussian basis sets,” J. Chem. Phys.,
vol. 80, pp. 3265–3269, 1984.

Joupii N., C. Young, N. Patil, and D. Patterson, “In-
datacenter performance analysis of a tensor
processing unit,” in Proceedings of the 44th Annual
International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada,
June 24-28, 2017, 2017, pp. 1–12.

Kingma D.P. and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014.
[Online]. Available: http://arxiv.org/abs/1412.6980

Krishnan R., J. Binkley, R. Seeger, and J.A. Pople, “Self-
consistent molecular orbital methods. XX. A basis
set for correlated wave functions,” J. Chem. Phys.,
vol. 72, pp. 650–654, 1980.

Krizhevsky A., I. Sutskever, and G.E. Hinton, “Imagenet
classification with deep convolutional neural
networks,” in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2012, pp. 1097–1105.

LeCun Y., B. Boser, J.S. Denker, D. Henderson, R.E.
Howard, W. Hubbard, and L.D. Jackel,
“Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp.
541–551, Dec. 1989. [Online]. Available:
http://dx.doi.org/10.1162/neco.1989.1.4.541

Montavon G., M. Rupp, V. Gobre, A. Vazquez-
Mayagoitia, K. Hansen, A. Tkatchenko, K.-R.
Moller, and O.A. von Lilienfeld, “Machine learning
of molecular electronic properties in chemical
compound space,” New Journal of Physics, vol. 15,
no. 9, p. 095003, 2013. [Online]. Available:
http://stacks.iop.org/1367-2630/15/i=9/a=095003

Roos B.O., P. Taylor, and P.E.M. Siegbahn, “A complete
active space SCF method (CASSCF) using a
density matrix formulated super-CI approach,”
Chem. Phys., vol. 48, pp. 157–173, 1980.

Schmidt M.W., K.K. Baldridge, J.A. Boatz, S.T. Elbert,
M.S. Gordon, J.H. Jensen, S. Koseki, N.
Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M.
Dupuis, and J.A. Montgomery, “General atomic
and molecular electronic structure system,” J.
Comput. Chem., vol. 14, no. 11, pp. 1347–1363,
1993.

Siegbahn P.E.M., J. Almlof, A. Heiberg, and B.O. Roos,
“The complete active space SCF (CASSCF)
method in a Newton-Raphson formulation with
application to the HNO molecule,” J. Chem. Phys.,
vol. 74, no. 4, pp. 2384–2396, 1981.

Siegbahn P.E.M., A. Heiberg, B.O. Roos, and B. Levy,
“A comparison of the super-CI and the Newton-
Raphson scheme in the complete active space SCF
method,” Phys. Scr., vol. 21, pp. 323–327, 1980.

Sivaraman A., K. Winstein, P. Thaker, and H.
Balakrishnan, “An experimental study of the
learnability of congestion control,” in Proceedings
of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14. New York, NY, USA: ACM,
2014, pp. 479–490.

Zupan J. and J. Gasteiger, Neural Networks for Chemists:
An Introduction. New York, NY, USA: John Wiley
& Sons, Inc., 1993.

AUTHORS BIOGRAPHY
Dylan Hennessey completed an M.Sc. in Chemistry at
the University of Alberta (2018), under the supervision
of Mariusz Klobukowski. He is currently engaged in
bioinformatics research in the Department of Medicine.

Mariusz Klobukowski is a Professor of Chemistry,
Department of Chemistry, University of Alberta. His
research program is focused on the development and
applications of methods for accurate computational
studies of electronic structure, geometry, vibrational
spectra, reaction mechanisms, and one-electron
properties of organometallic molecules, molecular ions,
and molecular clusters in their ground and excited
electronic states.

Paul Lu is a Professor of Computing Science,
Department of Computing Science, University of
Alberta. His research interests are in the area of software
systems, including parallel and distributed systems,
operating systems, file systems, high-performance
computing, and network protocols. He is also one of the
co-developers of the “Problem Solving, Python
Programming, and Video Games” (PVG) (2018) massive
open online course (MOOC) on the Coursera platform.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

223

Figure 2: Scatter plots made from the predictions of the total energy (a), kinetic energy (b), electron-nuclei potential
energy (c), electron-electron potential energy (d), and nuclei-nuclei potential energy (e). Results from all folds for the F2
CNN are shown. Energies are given in Hartree units. The black diagonal line in each plot shows where perfect predictions
lie. The green line shows the range of predictions that fall within the MAE. The red line shows the range of predictions
that fall within the largest error.

(a) (b)

(c) (d)

(e)

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

224

Figure 3: The predictions of the energy curves as a function of the distance between dimers for the total energy (a), kinetic
energy (b), electron-nuclei potential energy (c), electron-electron potential energy (d), and nuclei-nuclei potential energy
(e). Results from all folds for the F2	CNN are shown. Energies are given in Hartree units and distances are given in Å. The
black points in each plot show where perfect predictions lie. The green points show the range of predictions that fall within
the MAE. The red points show the range of predictions that fall within the largest error.

(a) (b)

(c) (d)

(e)

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

225

