Discrete-event process simulation now has a long and distinguished history of supporting the improvement of manufacturing processes. From those origins, it has expanded its applicability to supply chains, service industries, health care, and public transport. In manufacturing contexts, simulation modeling and analysis regularly helps fine-tune the trade-off between high inventory versus danger of stockout, improve and balance machine utilization, schedule workers more effectively, and improve performance metrics such as average and maximum times in queue and average and maximum length of queues. In the present work, the authors describe a successful application of simulation to the manufacture of footwear. The original manufacturing process was beset by problems including low throughput, high headcount, overly high or low machine utilization, unduly large rejection rates, and ergonomic concerns. The simulation and analysis project described in this paper guided significant improvements, including doubling the output while reducing worker headcount to two-thirds of its initial value.
Discrete-Event Process Simulation | Footwear Manufacture | Resource Utilization | Queueing System Performance Metrics