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ABSTRACT 
Discrete-event process simulation now has a long and 
distinguished history of supporting the improvement of 
manufacturing processes.  From those origins, it has 
expanded its applicability to supply chains, service 
industries, health care, and public transport.  In 
manufacturing contexts, simulation modeling and 
analysis regularly helps fine-tune the trade-off between 
high inventory versus danger of stockout, improve and 
balance machine utilization, schedule workers more 
effectively, and improve performance metrics such as 
average and maximum times in queue and average and 
maximum length of queues.  In the present work, the 
authors describe a successful application of simulation to 
the manufacture of footwear.  The original 
manufacturing process was beset by problems including 
low throughput, high headcount, overly high or low 
machine utilization, unduly large rejection rates, and 
ergonomic concerns. 
The simulation and analysis project described in this 
paper guided significant improvements, including 
doubling the output while reducing worker headcount to 
two-thirds of its initial value. 

Keywords: discrete-event process simulation, footwear 
manufacture, resource utilization, queueing system 
performance metrics 

1. INTRODUCTION
Historically, discrete-event process simulation was first 
and very extensively used to improve manufacturing 
operations; indeed, examples in the literature are 
numerous.  A comprehensive review of progress and 
challenges in manufacturing simulation appears in 
(Mourtzis, Doukas, and Bernidaki 2014).  There are 
many potential ways to improve a generic manufacturing 
operation; e.g., lower inventory while keeping stockouts 
very rare, improve queue performance metrics 
(especially average and maximum time in queues, and 
average and maximum length of queues), keep utilization 
of expensive equipment high while improving those 
queue performance metrics, use headcount more 
efficiently and less extravagantly, and increase 
throughput.  Examples of such simulations abound; for 
example, (Mirzapourrezaei et al. 2011) applied 
simulation to improve an assembly process for 
manufacture of starters. 

In the present work, simulation analysis was applied to a 
manufacturing plant in India which makes shoes.  The 
global footwear market is, according to Allied Market 
Research, expected to garner $371.8B by 2020.  This 
market is lively, expanding, and volatile, and includes 
both primary and secondary marketplaces (Weinswig 
2016).  Footwear manufacture has expanded globally; 
already prominent in the United States and China, it is 
rapidly entering India.  In this paper, we present a 
successful simulation study of a shoe manufacturing 
plant in India.  The factory management, already 
confronting the need to significantly increase production, 
and having accepted the necessity of payroll and 
equipment investments to do so, wanted guidance on the 
best way to proceed in this endeavor.  This study has 
precedents: (Solomon, Jilcha, and Berhan 2014) used 
simulation to improve lead time prediction at a shoe 
manufacturer in Ethiopia; (Eryilmaz et al. 2012) 
analyzed production processes in a shoe manufacturing 
factory using simulation.  The management of this plant 
presented significant concerns including relatively low 
throughput relative to high labor headcount, unbalanced 
utilization of equipment, long queues and waiting times 
therein, ergonomic concerns, and low throughput. 
In the following sections, we (1) present an overview of 
the shoe-manufacturing operations, (2) describe the 
collection and analysis of input data, (3) discuss the 
building, verification, and validation of the simulation 
model, (4) highlight key results from this model obtained 
by output analysis, and (5) present conclusions, 
recommendations to the manufacturing plant’s 
management, and the directions in which likely future 
work may proceed. 

2. OVERVIEW OF SHOE MANUFACTURING
OPERATIONS

The overall process of manufacturing shoes comprises 
the following high-level steps: 

1. Procurement of raw materials
2. Cutting materials into shapes specified by

design
3. Sewing
4. Assembly of parts
5. Finishing
6. Quality verification
7. Repair/rework or scrap as necessary
8. Packaging and shipping
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Repair work may result in scrapping the shoe or selling 
it at a loss (“seconds”).  In this model, manufacture of 
shoes in the four most common sizes (seven, eight, nine, 
and ten inches) is considered.  Fundamentally, a shoe has 
four basic components, as shown in Figure 1 below: 

Figure 1:  Basic Components of a Shoe 

As configured at the beginning of this simulation study, 
the manufacturing facility comprises 93 workers and 88 
worker-run (e.g., manual or semi-automatic, not 
automatic) machines.  Open nine hours per day (9:00am 
to 6:00pm), the plant produces approximately 225 pairs 
of shoes daily.  Informal industry norms indicate a plant 
of this size and capitalization investment “ought” to 
produce approximately 350 pairs of shoes per day.  
Additionally, manual transfer of shoes from one task to 
the next is currently giving rise to ergonomic concerns – 
in particular, cervicobrachial (relating to the neck and 
arm) disorders, especially on the left side of the body; the 
importance and etiology of such disorders is documented 
in (Sällström and Schmidt 1984).  Accordingly, the plant 
management wished to evaluate the feasibility of 
conveyors to move the shoes. 

3. DATA COLLECTION AND ANALYSIS
Various essential input data was willingly and promptly 
provided to the analysts by plant supervisors and 
managers in Vellore, India.  Arrival rates were 200 per 
hour during all but the fourth, eighth, and ninth hours of 
a standard nine-hour shift, with scheduled working time 
(i.e., less breaks and lunch) of eight hours.  Average 
machine cycle times were provided as shown in Table 1 
immediately below, all gathered from raw data. 

Table 1:  Mean Cycle Time of Operations 
Process 
(Machine) 

Avg (min) 
Time/Piece 

Capacity 

Cutting 1.26 Variable 
Sewing 10.04 Variable 
Assembling 10.01 Variable 
Inspection 1.50 3 
Repairing 116.7 1 

After consultation with plant managers, the following 
assumptions were agreed to: 

1. No maintenance is performed during the
production period (it is done as necessary off-
shift, e.g., at night)

2. At the start of a day’s production, sufficient raw
material for the day is always available

3. No power interruptions occur
4. Downtimes at the cutting machines occur

approximately monthly and take several hours
to repair

5. Transportation time is not included in machine
cycle time, and is small relative thereto (the
longest transport distance in the plant being
only ten meters)

6. All workers are assumed equally skilled, and
hence produce the same quantity and quality in
equal time

7. 2% of production is unsatisfactory and hence
sent to repair; of the production sent there, 90%
can be repaired and sold as “seconds;” the
remaining 10% must be scrapped

Raw data was examined with the Stat::Fit® software 
(Benneyan 1998).  After doing so, and with the 
precaution of showing plant managers and supervisors 
the characteristic histogram of distributions, arrivals 
were modeled as exponential, whereas machine cycle 
times were modeled as uniform or triangular 
distributions.  As often occurs in practical simulation 
work, the value added by using distribution-fitting 
software was not so much advice on the best distribution 
to use (if indeed there existed a single “best” 
distribution), but rather cautionary advice on 
conspicuously inappropriate distributions to avoid (in 
these cases, the normal, gamma, and lognormal 
distributions). 

4. MODEL DEVELOPMENT, VERIFICATION,
AND VALIDATION

The very first model built was entirely conceptual – a 
flow chart of all paths taken from raw material to 
completed product: “Now, let put this shoe on your foot, 
and we’ll see if it fits.”  Drawing and revising this model 
ensured that the analysts’ understanding of the process 
flows exactly matched the expert knowledge of the plant 
managers and supervisors.  Members of the project team 
then concurred in the choice of the Simio® software 
[SIMulation with Intelligent Objects] (Prochaska and 
Thiesing 2017), (Smith, Sturrock, and Kelton 2018) to 
construct a model of the salon’s operations.  Simio®

provides constructs such as the Server (to model, for 
example, the cutting machines for the uppers, middle 
soles, and “outsoles”), the Worker (design checkers and 
quality checkers), a Combiner (e.g., gathering and 
sewing matched components together, and Conveyors 
(all but one proposed conveyor is to be non-
accumulating).  These Simio® constructs were used to 
model the key steps outlined in Table 1: 

1. Cutting:  the raw materials are cut into both left
and right shoes in various sizes.  Since the
different parts of a shoe are made of different
materials, the model considers three different
procurement centers for cutting each shoe
component.
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2. Sewing:  The cut components are sent to the
assembly section of the manufacturing unit for
further processing – all sewing is performed in
this phase for all shoe sizes, and for both left and
right shoes.

3. Assembly:  Unites all parts of the shoe.
4. Inspection: A quality-checking worker 

examines each shoe for defects.
5. Repair:  Low-quality shoes may be sent to

rework, if repairable, will be sent to rework.
There, they will be repaired for sale at a
discounted price.  Shoes which cannot feasibly
be repaired are scrapped (c.f. assumption 7
above).

The first iteration of the Simio® model deliberately 
contained only the Simio® default values for parameters 
such as interarrival times and cycle times.  Only after 
verification of correct entity flow in the animation were 
the values obtained from data collection and analysis 
(previous section) inserted.  A partial two-dimensional 
screen shot of this model, as completed, is shown in 
Figure 2, Appendix.  From this screen, a three-
dimensional animation is only two clicks away. 
Verification and validation of the model used the 
following traditional and time-tested techniques 
(Sturrock 2018): 

• Structured walkthroughs among the analyst
team

• Sending one entity (arriving raw material)
through the model and tracking, on a time line,
every step taken by that entity

• Temporary removal of all stochastic variation
of the model, followed by arithmetic checks
using Microsoft Excel®

• Ensuring that every routing path placed in the
model has non-zero traffic

• Directional variation (e.g., do queue lengths and
waiting times increase when the cycle time of a
machine is increased -- do they decrease when
the capacity of a machine is increased?)

The usual errors were detected and corrected.  Indeed, 
one error resulted in “pairs” of shoes comprising two left 
shoes or two right shoes! Another error, a routing logic 
error, was exposed by noticing that one of the routes in 
the model was never used.  After correcting these errors 
was completed, comparison of model results, pertaining 
to the current system, with data actually observed during 
production yielded agreement of performance metrics 
within 4%, helping the model achieve credibility with the 
plant management. 

5. EXPERIMENTATION AND RESULTS
In keeping with actual policy at the manufacturing plant 
(production started anew daily), the model was run as a 
terminating system, hence zero warm-up time.  Each 
replication represented one day’s production.  Since the 
facility typically works 25 days per calendar month, and 
after ensuring that 25 replications yielded sufficiently 
narrow confidence intervals for performance metrics, the 
three experimental scenarios were each run for 25 

replications.  The variance reduction technique (VRT) of 
common random numbers (CRNs) was used (Nakayama 
2003).  Simio® conveniently accommodates this 
technique by allowing the specification of different 
random number streams for interarrival times, cycle 
times, times to next failure, and repair times, as was done 
in this model.  Confidence levels for estimation of 
performance metrics were taken at 95%, and similarly for 
the confidence level of testing the null hypothesis of 
equal performance of any two scenarios.  Each of these 
scenarios substituted short conveyors for currently 
manual transfers.  Since management was proposing 
adding machines as well as workers, the key scenarios 
addressing one of the major investment decisions to be 
taken were listed as follows in Table 2: 

Table 2.  Investment Scenarios Considered 
Proposal #sewing 

employees 
#assembly 
employees 

Smaller invest 27 20 
Moderate invest 30 25 
Larger invest 33 30 

The “moderate” scenario proved the best in this 
simulation experiment, relative to the performance 
metrics of machine utilizations, average time in system 
of a shoe, and most importantly, shoes output per day. 
The parameters and performance of the current system 
versus the scenario of moderate investment showed, as 
summarized in Table 3 immediately below: 

Table 3.  Proposed System Versus Current System 
Current Planned 

15 assembly line workers 25 assembly line workers 
25 sewing line workers 30 sewing line workers 
18 cutting line workers 3 machines; 3 workers 
5 quality checkers 3 quality checkers 
Shoe TIS* 2½ hours Shoe TIS* 1½ hours 
225 pairs shoes per day 492 pairs shoes per day 

*TIS = time in system

These results were summarized into direct answers of 
management’s initial questions as follows: 
Question:  Should an investment be made in an automatic 
cutting machine? 

Answer:  Yes; this investment will permit the 
reduction of workers needed in the cutting line from 
18 to 3, as shown in Table 3 above. 

Question:  Does throughput increase? 
Answer:  Yes, even with fewer workers, it more than 
doubles, as shown in Table 3 above. 

Question:  Does the increased throughput from the 
cutting section affect other sections? 

Answer:  Yes, more workers will be needed in both 
the assembly and the sewing sections; these workers 
can be redeployed from the cutting line workers no 
longer needed. 

Question:  With fewer quality checkers, can quality be 
maintained? 
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Answer:  Yes, because the automated cutting 
machine will greatly reduce the error rate.  However, 
it is acknowledged that the utilization of the three 
remaining quality checker will increase – expected 
to be a plus since inspection workers with too little 
to do may become bored and complacent – then miss 
defects (Ramzan, et al 2019) 

Management, being highly pleased with and reassured by 
these results, is now beginning the implementation of 
machine investments and addition of labor, with 
conversion of manual transfer to conveyors to follow 
shortly and largely concurrently. 
 
6. CONCLUSIONS AND FUTURE WORK 
Given the promising results of this simulation analysis, 
ideas for follow-up work are already being considered.  
These ideas include refinement of the conveyor 
specifications (lengths, speeds, capacities, and non-
accumulating versus accumulating), expansion of the 
model to accommodate changes in demand mix (for 
example, one size may be more in demand than another), 
and adding analysis of different worker skill levels 
(hence payroll costs, pieces produced per hour, and reject 
rates). 
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APPENDIX A 

Figure 2:  Screen of the Simio® Model Layout 

Figure 3:  Example of Simio® Graphical Output Across Scenarios 
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