Models of terahertz and infrared devices based on graphene/black-AsP heterostructures

  • M. Ryzhii  ,
  • T. Otsuji  ,
  • V. Ryzhii  ,
  •  d V. Leiman  ,
  • V. Mitin  ,
  •  f M.S. Shur  
  • a University of Aizu, Aizu-Wakamatsu, Japan
  • b,c RIEC, Tohoku University, Sendai, Japan
  • c,d Moscow Institute of Physics and Technology, Dolgoprudny, Russia
  • e University at Buffalo, Buffalo, USA
  • f Rensselaer Polytechnic Institute, Troy, USA
Cite as
Ryzhii M., Otsuji T., Ryzhii V., Leiman V., Mitin V., Shur M.S. (2019). Models of terahertz and infrared devices based on graphene/black-AsP heterostructures. Proceedings of the 31st European Modeling & Simulation Symposium (EMSS 2019), pp. 237-240. DOI: https://doi.org/10.46354/i3m.2019.emss.034.

Abstract

The gapless energy spectrum of the graphene layers (GLs) enables the interband absorption and emission of photons and plasmons in the terahertz (THz) and infrared (IR) spectral range. The energy of the emerging the black-phosphorus (b-P), black-arsenic (b-As), and the compounds (b-AsxP1-x) varies from 0.15 to 1.7 eV, depending on the number of the atomic sheets and the component relative content. Due to a strong anisotropy of the b-P and b-As, the ratios of the carrier effective masses in different in-plain directions are very large. One of the crucial properties of the GL heterostructures with the b-P, b-As, and b-AsxP1-x barrier layers are associated with the GL Dirac point corresponding to the energy gap in the barriers. Combination of GLs with the b-P, b-As, and b-AsxP1-x layers opens new prospects for the novel THz and IR devices, in particular, GL-based photodetectors, electro-optical modulators, and sources of THz/IR radiation, including the lasers with the GL active region.

References

  1. Castro Neto A.H., Guinea F., N. Peres M.R., Novoselov K.S., Geim A.K., 2009. The electronic properties of graphene. Review of Modern Physics, 81, 109-162.
  2. Keyes R.W., 1953. The electrical properties of black phosphorus. Physical Review, 92 (3), 580-584.
  3. Morita A., 1986. Semiconducting black phosphorus. Applied Physics A, 39(4), 227-242.
  4. Asahina H., Morita A., 1984. Band structure and optical properties of black phosphorus. Journal of Physics C: Solid State Physics, 17(11), 1839-1852.
  5. Ling Xi, Wang H., Huang S., Xia F., Dresselhaus M.S., 2015. The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the USA, 112(15), 4523-4530.
  6. Xia F., Wang H., Jia Y., 2014. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458.
  7. Guo Z., Zhang H., Lu S., Wang Z., Tang S., Shao J., Sun Z., Xie H., Wang H., Yu X.-F., Chu P.K., 2015. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Advanced Functional Materials, 25(45), 6996-7002.
  8. Liu B., Kopf M., Abbas A.N., Wang X., Guo Q., Jia Y., Xia F., Weihrich R., Bachhuber F., Pielnhofer F., Wang H., Dhall R., Cronin S.B., Ge M., Fang X., Nilges T., and Zhou C., 2015. Black arsenicphosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Advanced Materials 27(30), 4423-4429.
  9. Long M., Gao A., Wang P., Xia H., Ott C., Pan C., Fu Y., Liu E., Chen X., Lu W., Nilges T., Xu J., Wang X., Hu W., Miao F., 2017. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Scientific Advances, 3(6), e1700589.
  10. Yuan S., Shen C., Deng B., Chen X., Guo Q., Ma Y., Abbas A., Liu B., Haiges R., Ott C., Nilges T., Watanabe K., Taniguchi T., Sinai O., Naveh D., Zhou C., Xia F., 2018. Air-stable roomtemperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN Heterostructures. Nano Letters, 18(5), 3172-3179.
  11. Ryzhii V., Ryzhii M., Svintsov D., Leiman V., Mitin V., Shur M.S., Otsuji T., 2017. Infrared photodetectors based on graphene van der Waals heterostructures. Infrared Physics and Technology, 84, 72-81.
  12. Ryzhii V., Ryzhii M., Leiman V., Mitin V., Shur M. S., Otsuji T., 2017. Effect of doping on the characteristics of infrared photodetectors based on van der Waals heterostructures with multiple graphene layers. Journal of Applied Physics, 122(5), 054505.
  13. Ryzhii V., Ryzhii M., Svintsov D., Leiman V., Mitin V., Shur M. S., Otsuji T., 2017. Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers. Optics Express, 25(5), 5536.
  14. Ryzhii V., Otsuji T., Karasik V.E., Ryzhii M., Leiman V.G., Mitin V., Shur M.S., 2018. Comparison of intersubband quantum-well and interband graphene-layer infrared photodetectors. IEEE Journal of Quantum Electronics, 54(2), 2797912.
  15. Ryzhii V., Otsuji T., Ryzhii M., Ponomarev D.S., Karasik V.E., Leiman V.G., Mitin V., Shur M.S., 2018. Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures. Semiconductor Science and Technology, 33(12), 124010.
  16. Ryzhii V., Otsuji T., Ryzhii M., Dubinov A.A., Aleshkin V.Ya., Karasik V.E., Shur M.S., 2019. Amplification of surface plasmons in grapheneblack phosphorus injection laser heterostructures. arXiv:1901.00580.
  17. Ryzhii V., Ryzhii M., Otsuji T., Karasik V.E., Leiman V.G., Mitin V, Shur M.S., 2019. Negative terahertz conductivity at vertical carrier injection in a black-arsenic-phosphorus-graphene heterostructure integrated with a light-emitting diode. arXiv:1901.10755.
  18. Ryzhii V., Ryzhii M., Ponomarev D.S., Leiman V. G., Mitin V., Shur M.S., Otsuji T., 2019. Negative photoconductivity and hot-carrier bolometric detection of terahertz radiation in graphenephosphorene hybrid structures. Journal of Applied Physics, 125(15), 151608.