
MULTI-OBJECTIVE OPTIMIZATION 
FOR A SCHEDULING PROBLEM IN THE STEEL INDUSTRY 

Viktoria A. Hauder(a)(b), Andreas Beham(a)(c), Sebastian Raggl(a), Michael Affenzeller(a)(c) 

(a) Heuristic and Evolutionary Algorithms Laboratory, 
University of Applied Sciences Upper Austria, Hagenberg, Austria 

(b) Institute for Production and Logistics Management, 
Johannes Kepler University Linz, Austria 

(c) Institute for Formal Models and Verification, 
Johannes Kepler University Linz, Austria 

(a){viktoria.hauder,andreas.beham,sebastian.raggl,michael.affenzeller}@fh-hagenberg.at 

ABSTRACT 
Multiple conflicting objectives such as costs versus 
quality are part of many optimization processes in the 
area of production and logistics management. Exactly 
such a case is also examined in this work. For an already 
existing resource-constrained project scheduling 
problem, a second objective function, inspired by the 
steel industry, is taken into account. Together with the 
presentation of the related mixed integer programming 
(MIP) and constraint programming (CP) models, the 
recently developed balanced box method (Boland, 
Charkhgard, and Savelsbergh 2015) is used to solve this 
bi-objective optimization problem. Both approaches 
(MIP and CP) are compared in terms of runtime and 
solution quality, showing the advantages of using CP. 

Keywords: multi-objective optimization, scheduling, 
balanced box method, steel industry 

1. INTRODUCTION
For the successful implementation of real-world logistics 
optimization problems, more than one objective has to be 
considered in many cases. In this work, such a multi-
objective optimization problem is investigated. The 
starting point for this examination is the work of Hauder, 
Beham, Raggl and Affenzeller (2018), where a single-
objective scheduling problem of a steel manufacturer is 
presented. They introduce a resource-constrained multi-
project scheduling problem, where one out of multiple 
alternative production paths has to be selected for the 
manufacturing of steel lots. The objective is the 
minimization of the makespan. For the real-world 
application, however, an additional target criterion has to 
be taken into account. The company has defined 
priorities for the selection of the alternative production 
paths, resulting in a priority function maximization as a 
second objective (Hauder, Beham, Raggl, Affenzeller 
2019b). In order to tackle this multi-objective 
optimization problem (MOP), the so-called balanced box 

method (BBM) (Boland, Charkhgard, and Savelsbergh 
2015) is regarded. The results of the chosen method are 
presented for the mixed integer programming (MIP) as 
well as for the constraint programming (CP) model of the 
multi-objective optimization problem by solving it with 
the optimization suite IBM ILOG CPLEX. The achieved 
solutions are then compared concerning runtime 
efficiency and solution quality. 

The paper is organized as follows. First, related work 
concerning multi-objective optimization is described in 
Section 2. Next, the multi-objective industry case models 
are presented in Section 3. Optimization results are then 
illustrated in Section 4, followed by concluding remarks 
and a future outlook in Section 5. 

2. RELATED LITERATURE
Many real-world optimization problems involve two or 
even more conflicting objectives. Typical well-known 
examples are a maximized quality on the one hand and 
minimized costs on the other hand. For decision makers, 
it is very often not easy to prioritize or weight such 
conflicting goals prior to a necessary optimization 
process. One possible way out of this challenging target 
is the generation of all Pareto-optimal solutions, i.e. the 
set of all optimization solutions in which one objective 
can no longer be improved without worsening another 
one (=Pareto-set). Decision makers can then evaluate all 
generated trade-off solutions and select the one they rate 
best for their field. 
In order to generate the Pareto-set, different heuristic and 
exact solution methods have already been developed 
(Bechikh, Datta, and Gupta 2016; Ehrgott 2005). 
Examples for MOP methods are the weighted sum 
method (Aneja, Nair 1979; Hauder, Beham, Raggl, 
Affenzeller 2019b), the 𝜀-constraint method (Haimes 
1971) and the non-dominated sorting algorithm 
(Srinivas, Deb 1994). However, since a full investigation 
of such methods is outside the scope of this work, the 
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interested reader is referred to Bechikh, Datta, and Gupta 
(2016), Deb (2014), and Ehrgott (2005) for a further 
detailed examination. 

One of the most recently developed methods is the 
balanced box method. This new algorithm for bi-
objective optimization problems has been introduced by 
Boland, Charkhgard, and Savelsbergh (2015). Such as 
other multi-objective optimization methods, it finds all 
nondominated points and is described to be very 
competitive in terms of solution quality and runtime. The 
BBM is an extension of the Box algorithm (Hamacher, 
Pedersen, and Ruzika 2007) and always splits the 
solution space into two parts (bottom and top rectangle). 
First, the bottom rectangle is searched for a 
nondominated point by lexicographically optimizing it. 
Second, the top rectangle is optimized the same way, but 
already without considering the part which has been 
identified to be dominated by the first bottom rectangle 
optimization. This procedure is repeated until all 
nondominated points are found, always by again splitting 
the existing boxes and without considering the 
dominated part of the prior optimization for a speed up 
of the optimization process (Boland, Charkhgard, and 
Savelsbergh, 2015).  

Project scheduling is known to be a promising modeling 
approach when limited resources and precedence 
relations have to be taken into account. The related 
optimization problem is the so-called resource-
constrained project scheduling problem (RCPSP). The 
basic RCPSP consists of activities which have to be 
scheduled under consideration of time restrictions, 
resource constraints and precedence relations (Hartmann 
and Briskorn 2010). Many real-world applications show 
that flexibility in the selection of such activities is a 
necessary extension of this problem (Kellenbrink and 
Helber 2015; Čapek, Šůcha, and Hanzálek 2012). 
Hauder, Beham, Raggl and Affenzeller (2018, 2019a) 
also give two further extensions of the RCPSP where 
flexibility is considered, based on the work of Tao and 
Dong (2017). They work on the selection of alternative 
activities for the production of multiple steel lots in a 
single-objective environment. 

3. MULTI-OBJECTIVE SCHEDULING FOR
THE STEEL INDUSTRY

In the following, we first describe the multi-objective 
problem in detail, including the consideration of a second 
objective and related additional constraints within a 
mixed integer programming model in Section 3.1. 
Thereafter, we present the constraint programming 
formulation in Section 3.2. 

3.1. Steel industry scheduling with multiple 
objectives: MIP formulation 

Our steel industry partner needs an optimized solution 
for a resource-constrained project scheduling problem 
allowing flexibility in the selection of activities. This 
problem arises after the completion of the continuous 

casting process and ends with customer deliveries. It 
consists of operations or activities or nodes 𝑖, 𝑗 ∈
{0, … , 𝑁 + 1}, where nodes {0, 𝑁 + 1} represent 
artificial start and end nodes and all other nodes are real-
world activities. Moreover, the subset 𝐿 ⊂ 𝑁 defines the 
lots and thus, the customer orders considered for the 
optimization. The adjacency matrix 𝐴𝑖𝑗 represents the 
allowed and forbidden connections between all activities. 
With the flexibility type 𝑓𝑖, flexibility in the selection of 
alternative production routes is represented. The 
processing time 𝑝𝑖  is defined for every activity and all 
activities need renewable resources 𝑘 ∈ {1, … , 𝐾} with a 
demand 𝑄𝑖𝑘 . We only consider renewable resource 
capacities 𝐶𝑘, since nonrenewable ones do not exist in the 
manufacturer´s plant. The time horizon 𝑡 ∈ {1, … , 𝑇} 
gives the maximum planning period. With decision 
variable 𝑦𝑖 , it is decided if an activity is selected for 
performance (𝑦𝑖 = 1) or not (𝑦𝑖 = 0) and 𝑧𝑖𝑡 decides if 
an activity is selected for completion at time slot 𝑡 (𝑧𝑖𝑡 =
1) or not (𝑧𝑖𝑡 = 0).
The minimization of the makespan is a very well-known 
objective (Hartmann and Briskorn 2010) and has already 
been considered in Hauder, Beham, Raggl and 
Affenzeller (2018). The second goal of priority 
maximization (Hauder, Beham, Raggl and Affenzeller 
2019b)  is implemented by the assignment of a priority 
value 𝑃𝑟𝑖𝑜𝑖 for the subset 𝑃𝑖   which includes all activities 
with priority values. The higher the priority value is, the 
more the company wishes to select the corresponding 
activity and thus, a specific production route. Overall, the 
presented descriptions result in the following mixed 
integer programming model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

∑ 𝑡 ∙

𝑡∈𝑇

𝑧𝑁+1𝑡 (1a) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

∑ ∑ 𝑃𝑟𝑖𝑜𝑖 ∙

𝑖∈𝑃𝑡∈𝑇

𝑥𝑖  (1b) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑦0 = 1 (2) 

∑ 𝑧𝑖𝑡 = 𝑦𝑖

𝑡∈𝑇

  ∀ 𝑖 ∈ 𝑁, (3) 

∑ 𝐴𝑖𝑗 ∙  𝑦𝑗 = 𝑦𝑖

𝑗∈𝑁

  ∀ 𝑖 ∈ 𝑁,  𝑖𝑓 𝑓𝑖 = 0, (4) 

𝑦𝑗 ≥ 𝐴𝑖𝑗 ∙  𝑦𝑖            ∀ 𝑖, 𝑗 ∈ 𝑁,    𝑖𝑓 𝑓𝑖 = 1, (5) 

∑ 𝐴𝑖𝑗 ∙  𝑦𝑗 = 𝑦𝑗

𝑗∈𝑁

  ∀ 𝑖 ∈ 𝑁,  𝑖𝑓 𝑓𝑗 = 2, (6) 
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𝐴𝑖𝑗(∑ 𝑡 ∙  𝑧𝑖𝑡) + (𝑦𝑗 + 𝑦𝑖 − 2)

𝑡∈𝑇

∙ 𝑀 ≤

∑ 𝑡 ∙  𝑧𝑗𝑡 − 𝑝𝑗   ∀ 𝑖, 𝑗 ∈ 𝑁,

𝑡∈𝑇

(7) 

∑ ∑ 𝑧𝑖𝜏

𝑡+𝐷𝑖−1

𝜏=𝑡

∙ 𝑄𝑖𝑘 ≤ 𝐶𝑘

𝑖∈𝑁

 ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, (8) 

∑ ∑ 𝑃𝑟𝑖𝑜𝑖 ∙

𝑖∈𝑃𝑡∈𝑇

𝑥𝑖 ≥ 𝐿, (9) 

𝑦𝑖 , 𝑧𝑖𝑡 ∈ {0,1} ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. (10) 

Objective (1a) minimizes the overall makespan. 
Objective (1b) maximizes priority values, i.e. it 
maximizes the selection of the routes which the company 
prioritizes the highest. With constraint (2), the 
production is started and constraints (3) ensure that 
activities which are selected for performance are exactly 
finished once. Restrictions (4)-(6) show flexibility 
possibilities: If an activity is an OR node, exactly one 
successor must be selected; if an activity is an AND 
node, more than one successor can be selected. If an 
activity is an OUT node (=dummy sink node per project), 
it is guaranteed that no additional nodes of other 
production routes of the same lot (=project) can be 
selected. Conditions (7) imply that processing times are 
met. With constraints (8), capacity restrictions are 
introduced. Condition (9) serves as a lower bound for the 
second objective of priority maximization: As for all 
production routes, a minimum value of 1 is defined in the 
input, the sum of all priorities must at least correspond 
with the amount of lots considered for the optimization 
(since for every lot, one production route has to be 
selected according to restrictions (4)). Constraints (10) 
define the decision variables as binary ones. 

3.2. Steel industry scheduling with multiple 
objectives: CP formulation 

For the constraint programming model, the formulation, 
including decision variables and resource utilization, 
works differently compared to the MIP model. CP in 
general and also the CP Optimizer of IBM ILOG CPLEX 
consist of decision variables, functions and expressions 
for the decision variables, and resource functions 
(Bockmayr and Hooker 2005; Laborie, Rogerie, Shaw, 
and Vilím 2018). 
For our CP model, we use the decision variable 
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑤𝑗) optional in 0..T. It selects one out 
of multiple alternative activities and decides on the start 
time of every activity. Moreover, the resource function 
cumulFunction 𝑞𝑟 = ∑ pulse(𝑤𝑗 , 𝑐𝑗𝑟)𝑗∈𝒥:𝑐𝑗𝑟≥0

decides on the cumulative resource usage of every 
activity, considering its demand 𝑐𝑗𝑟 , over time. The 
resulting optimization model for the BBM 
implementation is now presented as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

 endOf(𝑤𝑛+1) (11a) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

∑ 𝑃𝑟𝑖𝑜𝑖 ∙

𝑖∈𝑃

presenceOf(𝑤𝑖) (11b) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

startOf(𝑤0) = 1, (12) 

presenceOf(𝑤0) = 1, (13) 

presenceOf(𝑤𝑛+1) = 1, (14) 

presenceOf(𝑤𝑖) = 1  ∀ 𝑖 ∈ ℒ, (15) 

lengthOf(𝑤𝑖) =  𝑝𝑖      ∀ 𝑖 ∈ 𝒥, (16) 

endOf(𝑤𝑖) ≥  𝐷𝑖    ∀ 𝑖 ∈ ℒ, (17) 

endOf(𝑤𝑖) ≤  𝑇   ∀ 𝑖 ∈ ℒ, (18) 

alternative(𝑤𝑖 , {𝑤𝑎 ∈ 𝑆𝑖})    ∀ 𝑖 ∈ ℳ, (19) 

endAtStart(𝑤𝑖 , 𝑤𝑎) 

 ∀ 𝑖 ∈ ℳ, 𝑎 ∈ 𝐸𝑖 , 
(20) 

endBeforeStart(𝑤𝑖 , 𝑤𝑛+1)    ∀ 𝑖, 𝑗 ∈ ℒ, (21) 

endAtStart(𝑤𝑖 , 𝑤𝑗)  ∀ 𝑖, 𝑗 ∈ 𝒜, (22) 

presenceOf(𝑤𝑖) = presenceOf(𝑤𝑗) 

 ∀ 𝑖, 𝑗 ∈ 𝒜,
(23) 

∑ 𝑃𝑟𝑖𝑜𝑖 ∙

𝑖∈𝑃

presenceOf(𝑤𝑖)  ≥ 𝐿, (24) 

𝑞𝑟 ≤ 𝐶𝑟    ∀ 𝑟 ∈ ℛ. (25) 

Objective (11a) minimizes the overall makespan and the 
objective (11b) maximizes the priority values. 
Constraints (12)-(14) guarantee the start and end of the 
whole production cycle. Restrictions (15) ensure the 
production of all lots. With conditions (16), the 
processing times have to be adhered to. Constraints (17)-
(18) forbid early deliveries and restrict the schedule to 
the overall project horizon T. With restrictions (19)-(20), 
flexibility in terms of alternative routes is presented. 
Constraints (21) ensure that all lots have to be produced 
before the production process is finished. Conditions 
(23) imply the adherence to existing precedence relations 
and constraints (24) serve as a lower bound for priority 
values, as already explained for the MIP model. With 
constraints (25), capacities cannot be exceeded. 

4. COMPUTATIONAL RESULTS
Both models and the corresponding balanced box method 
are implemented in and solved by IBM ILOG CPLEX 
12.9.0 on a virtual machine Intel(R) Xeon(R) CPU E5-
2660 v4, 2.00GHz with 28 logical processors, Microsoft 
Windows 10 Education. The runtime (T) is limited to one 

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

243



hour, since this is the limit set by our steel industry 
partner. The used benchmark instances are the ones 
presented in Hauder, Beham, Raggl, Parragh and 
Affenzeller (2019a) and extended in terms of priority 
values. The values are defined from 1 to 3 and randomly 
assigned to all lots. The value 1 corresponds with the 
highest priority and 3 with the lowest one. The test 
instances consist of 10, 15, and 20 lots. For every lot size, 
five instances are randomly generated. 

In Table 1, CP and MIP optimization solutions are 
presented. Column 1 gives the lot size and column 2 the 
number of activities considered for each instance. The 
third column shows the runtime in seconds; and the “T” 
indicates that the runtime limit of 3,600 seconds has been 
reached. In column 4, the amount of non-dominated 
points found by the CP optimization is presented. 
Column 5 and 6 follow the same explanation logic, 
showing the results of the MIP optimization. Bold letters 
represent the finding of the whole Pareto-set. 

Table 1. CP optimization results with the balanced box 
method. 

CP MIP 

Lots Activi-
ties 

Run-
time 

#Non.-
dom. 

Run-
time 

#Non.-
dom. 

10 

160 2.27 4 T 2 
163 15.07 9 T 2 
158 16.79 10 T 2 
163 15.82 11 T 1 
167 35.11 9 T 2 

15 

232  117.30 6 T - 
259 T 12 T - 
238 T 12 T - 
252 2459.26 12 T - 
247 T 19 T - 

20 

311 T 2 T - 
340 T 5 T - 
319 T 3 T - 
340 T 1 T - 
306 T 2 T - 

It can be seen in Table 1 that, with the MIP model, it is 
only possible to generate solutions for the smallest 
instance size of 10 lots. For bigger instances, it is not 
even possible to generate a feasible solution. We assume 
that the reasons for these findings are two-fold. On the 
one hand, we have a huge amount of nodes already for 
the smallest lot size 10 (already more than 150 nodes), 
resulting in a huge amount of decision variables and 
constraints that have to be considered by the MIP solver 
in contrary to the CP solver. On the other hand, two 
objectives have to be regarded, which also seems to make 
the problem very hard to solve for the MIP solver. 
For the CP solution approach, it can be seen that the 
whole Pareto-front is easily found for small instances. 
However, the bigger and thus, the more complex the 

instances become, the harder it is for the CP Optimizer to 
find even one non-dominated point. Nevertheless, the 
optimization solutions show that the CP model is more 
competitive in terms of solution quality and runtime, e.g. 
having a runtime of under one minute and all optimal 
solutions for all instances of lot size 10 in contrary to the 
MIP approach, where only some optimal solutions are 
found within the allowed time limit T. 

5. CONCLUSION
In this work, a multi-objective optimization of an already 
existing RCPSP with activity selection flexibility has 
been presented. By applying the balanced box method, it 
is possible to generate the full Pareto-set for small 
instances with the developed CP model in contrary to the 
MIP approach. However, bigger instances show the limit 
of this approach for the here presented RCPSP. Future 
work should therefore concentrate on alternative multi-
objective algorithms, as for example the NSGA-II, in 
order to generate exact solutions also for huger instances. 
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