Modeling for component relations in robotic disassembly

  • Xiang Li  ,
  • Yuanjun Laili  ,
  • Lin Zhang  ,
  •  d Lei Ren  
  • a,b,c,d School of Automation and Electrical Engineering, Beihang University, China
Cite as
Li X., Laili Y., Zhang L., Ren L. (2019). Modeling for component relations in robotic disassembly. Proceedings of the 31st European Modeling & Simulation Symposium (EMSS 2019), pp. 246-253. DOI: https://doi.org/10.46354/i3m.2019.emss.036.

Abstract

Robotic disassembly is a critical technology to achieve automatic disassembly in remanufacturing. However, industrial robots cannot recognize component relations of specific products with various unpredictable states. Therefore, a model for component relations is of great necessity for disassembly optimization problems like Disassembly Sequence Planning (DSP) and Disassembly Line Balancing Problems (DLBP). This paper first introduces the most commonly used models of component relations in three categories. The characteristics of different models are analyzed and compared from the aspects of transformational relations and applications. Finally, suggestions are given as a reference for choosing a suitable component relation model.

References

  1. Ilgin M.A. and Gupta S.M., 2016. Remanufacturing modeling and analysis. CRC Press.
  2. Guide Jr V.D.R., 2000. Production planning and control for remanufacturing: industry practice and research needs. Journal of operations Management, 18(4), 467-483.
  3. Tang O., Grubbström R.W. and Zanoni S., 2004. Economic evaluation of disassembly processes in remanufacturing systems. International Journal of Production Research, 42(17), 3603-3617.
  4. Bourjault A., 1984. Contribution à une approche méthodologique de l'assemblage automatisé: élaboration automatique des séquences opératoires. Thesis (PhD). Université de Franche-Comté.
  5. Dini G. and Santochi M., 1992. Automated sequencing and subassembly detection in assembly planning. CIRP annals, 41(1), 1-4.
  6. Huang Y.M. and Huang C.T., 2002. Disassembly matrix for disassembly processes of products. International Journal of Production Research, 40(2), 255-273.
  7. Riggs R.J., Battaïa O. and Hu S.J., 2015. Disassembly line balancing under high variety of end of life states using a joint precedence graph approach. Journal of Manufacturing Systems, 37, 638-648.
  8. De Mello L.S.H. and Sanderson A.C., 1990. AND/OR graph representation of assembly plans. IEEE Transactions on robotics and automation, 6(2), 188-199.
  9. Tseng H.E., Li J.D. and Chang Y.H., 2004. Connectorbased approach to assembly planning using a genetic algorithm. International Journal of Production Research, 42(11), 2243-2261.
  10. Zhang H.C. and Kuo T.C., 1997. A graph-based disassembly sequence planning for EOL product recycling. Twenty First IEEE/CPMT International Electronics Manufacturing Technology Symposium Proceedings 1997 IEMT Symposium. 140-151. Oct 13-15, Austin (Texas, USA).
  11. Zhou M.C. and Venkatesh K., 1999. Modeling, simulation, and control of flexible manufacturing systems: A Petri net approach. World Scientific.
  12. Guo X., Liu S., Zhou M.C. and Tian G., 2016. Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and Petri nets.. IEEE transactions on cybernetics, .46(11), 2435-2446.
  13. Güngör A., Gupta S.M., 2001. Disassembly sequence plan generation using a branch-and-bound algorithm. International Journal of Production Research, 39(3), 481-509.
  14. Tao F., Bi L., Zuo Y. and Nee A.T.C., 2018. Partial/parallel disassembly sequence planning for complex products. Journal of Manufacturing Science and Engineering, 140(1), 011016.
  15. Kalayci C.B., Gupta S.M., 2013. Ant colony optimization for sequence-dependent disassembly line balancing problem. Journal of Manufacturing Technology Management, 24(3), 413-427.
  16. Prenting T.O., Battaglin R.M., 1964. The precedence diagram: A tool for analysis in assembly line balancing. Journal of Industrial Engineering, 15(4), 208-213.
  17. Koc A., Sabuncuoglu I., Erel E., 2009. Two exact formulations for disassembly line balancing problems with task precedence diagram construction using an AND/OR graph. IIE Transactions, 41(10), 866-881.
  18. Li J.R., Khoo L.P., Tor S.B., 2005. An object-oriented intelligent disassembly sequence planner for maintenance. Computers in Industry, 56(7), 699-718.
  19. Zhang X.F., Zhang S.Y., 2010. Product cooperative disassembly sequence planning based on branchand-bound algorithm. The International Journal of Advanced Manufacturing Technology, 51(9-12), 1139-1147.
  20. Zhang W., Ma M., Li H., Yu J., 2017. Generating interference matrices for automatic assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 90(1-4), 1187-1201.
  21. Lu M., Li H., 2003. Resource-activity critical-path method for construction planning. Journal of construction engineering and management, 129(4), 412-420.
  22. Ghandi S., Masehian E., 2014. Review and taxonomies of assembly and disassembly path planning problems and approaches. Computer-Aided Design, 67, 58-86.
  23. Lambert A.J.D., 1999. Linear programming in disassembly/clustering sequence generation. Computers & Industrial Engineering, 36(4), 723-738.
  24. Altekin F.T., 2016. A Piecewise Linear Model for Stochastic Disassembly Line Balancing. IFACPapersOnLine, 49(12), 932-937.
  25. Ren Y., Yu D., Zhang C., et al, 2017. An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem. International Journal of Production Research, 55(24), 7302-7316.
  26. Bentaha M.L., Battaïa O., Dolgui A., 2014. Disassembly line balancing and sequencing under uncertainty. Procedia CIRP, 15, 239-244.