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ABSTRACT 
Solutions for combinatorial problems can be represented 
by simple encodings, e.g. vectors of binary or integer 
values or permutations. For such encodings, various 
specialized operators have been proposed and 
implemented. In workforce qualification optimization, 
qualification matrices can for example be encoded in the 
form of binary vectors. Though simple, this encoding is 
rather general and existing operators might not work too 
well considering the genotype is a binary vector, whereas 
the phenotype is a qualification matrix. Therefore, a new 
solution encoding that assigns a number of workers to 
qualification groups is implemented. By conducting 
experiments with NSGA-II and the newly developed 
encoding, we show that having an appropriate mapping 
between genotype and phenotype, as well as more 
specialized genetic operators, helps the overall multi-
objective search process. Solutions found using the 
specialized encoding mostly dominate the ones found 
using a binary vector encoding. 

Keywords: workforce qualification, encoding, multi-
objective optimization, NSGA-II, simulation 

1. INTRODUCTION
One of the main key factors for the success of 
manufacturing companies is qualified staff. Only if a 
company’s personnel is qualified in such a way that all 
necessary production steps can be carried out on time, a 
high customer service level with an associated 
maximized high customer satisfaction is achievable. At 
the same time, Europe and thus, the European industry, 
is facing skills shortage, i.e. there is an increasing amount 
of vacant jobs for which no qualified human resources 
are available (OECD 2018). This problem, also referred 
to as skill gap, can of course be counteracted by raising 
qualification through internal or external trainings which 
leads to an increased flexibility in the assignment 

possibilities of workers (De Bruecker, Van den Bergh, 
Beliën, and Demeulemeester 2015). However, in many 
cases there is not even enough workforce available that 
could be hired and then trained, resulting in a major 
economic challenge for European companies 
(EUROCHAMBRES 2019; OECD 2018). As a result, 
the flexibility should be achieved with the smallest 
possible amount of necessary qualifications. 
Precisely these two contradictory objectives, a 
maximized service level on the one hand and a 
minimized sum of necessary qualifications on the other 
hand represent the two major challenges in the long-term 
production planning of the flow shop system of our 
company partner. In order to tackle these problems, we 
propose a simulation-based multi-objective optimization 
approach with the optimization framework 
HeuristicLab (HL), consisting of an innovative encoding 
for the elitist non-dominated sorting genetic 
algorithm (NSGA-II) (Deb, Pratap, Agarwal, and 
Meyarivan 2002) and the simulation framework Sim#. 
The paper is structured as follows. In Section 2, we give 
an overview of the related scientific literature. Next, we 
present our solution method in Section 3, involving the 
developed new encoding for the applied multi-objective 
algorithm and the simulation model. In Section 4, we 
evaluate our proposed method, showing the potentials of 
our solution encoding for the NSGA-II as an appropriate 
algorithm for the presented problem. Finally, we 
conclude our work and give directions for further 
research in Section 5. 

2. RELATED LITERATURE
Workforce planning is a well-researched topic in the area 
of operations research. It defines how many workers 
should be hired or dismissed at which point in time and 
when they should work for how many periods of time. 
As a result, workforce planning can consist of staffing 
and scheduling decisions (De Bruecker, Van den Bergh, 
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Beliën, and Demeulemeester 2015). Related to this, it is 
also defined that if a worker is able to perform one 
specific task, he has one specific skill. There are different 
determinants which influence skills, such as the 
qualification, the experience or the age of a worker. 
Moreover, it is noted that skill determinants have a direct 
impact on so-called skill consequences, such as the 
quality of work. However, the link between skill 
determinants and consequences has rarely been observed 
up to now (De Bruecker, Van den Bergh, Beliën, and 
Demeulemeester 2015). Exactly this missing link 
complies with our object of investigation. We present a 
simulation-based optimization approach to study the 
impact of worker qualifications (skill determinant) on the 
customer service level of a company (skill consequence), 
assuming that the quality of work is expressed by the 
customer service level of the partner company. For this 
purpose we develop an innovative new solution encoding 
and corresponding variation operators that are able to 
screen the space of possible workforce qualifications. It 
is noted that we concentrate on the qualifications of 
workers, since this is the determining skill factor defined 
by our company partners. 
As we consider the two objectives of service level 
maximization and qualification minimization, we work 
on a multi-objective optimization problem. Besides well-
known solution methods such as the 𝜀-constraint method 
(Haimes, 1971) or the recently established Balanced Box 
Method (Boland, Charkhgard, and Savelsbergh 2015), 
there is the NSGA-II, proposed by Deb, Pratap, Agarwal, 
and Meyarivan (2002). This algorithm is the method of 
choice for many multi-objective optimization problems, 
including a wide variety of real-world applications (Hu, 
Bie, Ding, and Lin 2016; Wang, Fu, Huang, Huang, and 
Wang 2017). Although it is a generic metaheuristic 
solution approach, depending on the specific problem 
definition, new solution encodings have to be developed. 
The combination of a simulation model with a 
metaheuristic optimization method results in the so-
called simulation-based optimization or simulation 
optimization (Gosavi, 2015). With simulation-based 
optimization, a simulation model can be used as an 
objective function for approximating the performance of 
a real-world system. However, it is also possible to use 
optimization methods during the execution of a 
simulation. In general, simulation-based optimization is 
very often used to get an increased real-world system 
performance (Affenzeller et al. 2015; Kück, Broda, 
Freitag, Hildebrandt, and Frazzon, 2017; Lin, Chiu, and 
Chang 2019). 

3. MULTI-OBJECTIVE SIMULATION-BASED
WORKFORCE OPTIMIZATION

In the following, we explain our developed method. The 
optimization part takes responsibility for the assignment 
of workers to qualifications. The simulation part then 
simulates the flow shop by integrating the optimization 
solution candidates and evaluates the corresponding 
customer service level. The new solution encoding for 

the implemented NSGA-II is presented in Section 3.1. 
The simulation model is described in Section 3.2. 

3.1. New Solution Encoding 
In order to optimize the workforce qualifications, we use 
the optimization framework HeuristicLab (see 
https://dev.heuristiclab.com), where we implement a 
new solution encoding. The Qualification Encoding 
consists of two main properties that define the number of 
possible qualification configurations: i) the number of 
qualifications 𝑄 and ii) the number of workers 𝑊 that are 
present in the system that has to be optimized. A 
configuration is specified by a variable amount of distinct 
qualification groups and a number of workers assigned 
to each group. Qualification groups define which 
qualifications are present. Each worker 𝑤 must be 
assigned to exactly one group and each qualification 
must be present in at least one qualification group. An 
example of a qualification configuration is shown in 
Figure 1. In this example, a total of 6 qualifications need 
to be distributed among 20 workers. Each qualification 
group is represented as a Boolean vector in which 1 
indicates the presence of a qualification and 0 indicates 
its absence. In this configuration, 3 workers have been 
assigned to the first qualification group and therefore 
possess qualifications 2 and 5. 

Figure 1: Example qualification configuration. 

The encoding also provides 11 operators to create, cross, 
and manipulate such qualification configurations. 
Metaheuristic algorithms can use these operators in their 
implementations, e.g. to initialize populations or create 
offspring. All operators are described in Section 3.1.1. 
Furthermore, the feasibility of configurations is validated 
and a repair procedure is devised to correct infeasible 
configurations, as shown in Section 3.1.2. 

3.1.1. Operators 
In this section, the implemented operators, i.e. 1 solution 
creator, 5 crossover operators and 5 mutation operators, 
are presented. 

1) Random Qualification Creator (RQC)
This operator is used to create qualification 
configurations in a random fashion. A configuration 
contains at least 1 and a maximum of 𝑄 different 
qualification groups. A qualification group is a set of 
qualifications that are available for all workers in this 
group. All qualification groups within one configuration 

Workers
Qualification

Groups

010010 3

100100 4

111000 7

000111 6

Configuration

20
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must be unique. Furthermore, all workers must be 
assigned to a qualification group and one worker must 
not be present in more than one group. On average, each 
qualification group created contains one qualification. 
Initially, one worker is assigned to each group, all 
remaining workers are then distributed among the groups 
randomly. 

2) Union Average Crossover (UAX)
This crossover creates offspring that contain all groups 
from its parents by averaging and rounding up or down 
the number of workers in each group. Rounding up and 
down is done in an alternating fashion. 

Figure 2: The UAX. 

3) Overlap Average Crossover (OAX)
Compared to the UAX, this crossover creates offspring 
that only contain groups occurring in both parents. For 
such groups, the number of workers inside these groups 
is averaged. Workers assigned to groups that are not 
present in both parents are “lost”, i.e. a repair procedure 
distributes the missing workers among the groups that 
are present in the offspring. If no common groups are 
found, a discrete crossover, explained in the following 
paragraph, is applied. 

Figure 3: The OAX. 

4) Discrete Crossover (DX)
This crossover randomly selects groups from either 
parent and introduces them in the offspring. A resulting 
offspring configuration has the same amount of groups 
as the parent with the least groups. The last group taken 
from either parent is assigned the number of workers that 
have not been assigned yet. 

Figure 4: The DX. 

5) Set Cover Crossover (SCX)
This crossover aims to find the minimal set of pools 
present in the parents that covers all qualifications. This 
so called Set Cover Problem is an NP-complete problem 
itself (Karp 1972). Therefore, a construction heuristic, 
including a branch & bound algorithm have been 
implemented to tackle this problem. If the generated 
offspring is identical to either parent, the DX, as 
explained before, is applied. 

Figure 5: The SCX. 

6) Set Pack Crossover (SPX)
The SPX aims to select the greatest number of groups 
that do not intersect, i.e. that do not have the same 
qualifications. Finding such sets is equal to the Set 
Packing Problem, which is also NP-complete (Karp 
1972). Again, a construction heuristic has been 
implemented to solve this problem and if the offspring 
equals either parent, the DX is executed. 

Figure 6: The SPX. 

7) Add-Qualification-To-Group Manipulator
This manipulator first selects one group randomly, 
checks for unset qualifications and aborts if there are 
none. If unset qualifications are available, one 
qualification is randomly chosen and set. Finally, the 
manipulator decides how many workers should be 
removed from the old group and moved to the new group. 
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Figure 7: The Add-Qualification-To-Group manipulator. 

8) Remove-Qualification-From-Group Manipulator
This manipulator works in principle in the same fashion 
as the previous one. However, instead of adding a new 
qualification, it randomly removes one. Again, the 
number of workers to be transferred from the old to the 
new group is randomly chosen. 

Figure 8: The Remove-Qualification-From-Group 
manipulator. 

9) Swap-Qualification-Within-Group Manipulator
Here, one set and one unset qualification within a 
randomly chosen group are swapped. The qualifications 
are chosen randomly and if there are no unset 
qualifications, the chosen set qualification is removed. 

Figure 9: The Swap-Qualification-Within-Group 
manipulator. 

10) Split-Qualification-Group Manipulator
This manipulator splits a randomly chosen qualification 
group into two disjoint groups. The number of workers 
are split randomly between the two new groups. 

Figure 10: The Split-Qualification-Group manipulator. 

11) Merge-Qualification-Group Manipulator
Using this manipulator, qualifications of two randomly 
chosen groups are merged. All workers from both groups 
are transferred to the merged group. 

Figure 11: The Merge-Qualification-Group manipulator. 

3.1.2. Repair Procedure 
The implemented solution encoding also has some 
constraints that need to be adhered to. First, each 
qualification must be set in at least one qualification 
group (see Figure 12). 

Figure 12: An infeasible configuration, where two 
qualifications are not present in any qualification group, 
is repaired. 

Second, each worker must have at least one qualification, 
i.e. each worker must be assigned to exactly one 
qualification group (see Figure 13). 

Figure 13: An infeasible configuration, where 5 out of 20 
workers are not assigned to any qualification group, is 
repaired. 

Furthermore, a configuration must have unique 
qualification groups and an empty qualification group 
(i.e. a group which has either no workers or no 
qualifications assigned) is not allowed. To ensure these 
properties, a repair procedure has been implemented and 
is applied after every solution creation, crossover and 
mutation operation (except in case of the Merge-
Qualification-Group manipulation, which should never 
yield infeasible configurations). 

3.2. Simulated Production System 
The simulated production system has been first described 
by Schober, Altendorfer, Karder, and Beham (2019). We 
have created an implementation of the described model 
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with the help of the Sim# simulation kernel (see 
https://github.com/abeham/SimSharp). An overview of 
this model is depicted in Figure 14. 

Figure 14: The simulated production system with 2 lines 
and 4 stations per line, producing 4 different types of 
products. 

Figure 14 shows the production system. All products 
have to sequentially pass stations from left to right and 
are split up after the second station between the third and 
fourth in each line. Each station has its own capacity, i.e. 
how many workers can process jobs on this particular 
station at once, depicted in parenthesis. The inter-arrival 
time of production orders is log-normal distributed and a 
fixed customer-required lead time is used. The system 
has been designed for a total of 48 workers. Workers are 
in a pool, which means that they are idle, and are 
assigned to stations when required, using a first come 
first serve (FCFS) dispatching policy. FCFS assigns the 
first worker that is available and capable of operating the 
respective machine as determined by the worker's 
qualifications. Switching between stations costs time. 
After a machine has been operated by a specific worker, 
this worker is idle again. For a further detailed 
examination of the implemented simulation model, the 
interested reader is referred to the C# source code, which 
is available on GitHub (see https://github.com/abeham/ 
qualification-model). 

4. EXPERIMENTS & RESULTS
This section first discusses the experimental setup in 
Section 4.1 and then presents and discusses the observed 
optimization results in Section 4.2. 

4.1. Experimental Setup 
As already explained, an NSGA-II has been used to 
optimize the qualification configurations, where the 
service level is maximized and the total number of 
required qualifications is minimized. Two experiments 
(EB1+2) use the binary vector encoding, whereas three 
other experiments (EQ1–3) use the newly implemented 
qualification encoding. For statistical significance, all 
experiments are conducted with 10 repetitions. Table 1 
lists the parameters that were used to configure the 
NSGA-II. Values marked with EB are used in all binary 
vector encoding experiments, EQ defines parameter 
values used in all qualification encoding experiments. 

Table 1: The NSGA-II parameters for binary vector and 
qualification encoding experiments. 

Name Value 
PopulationSize 100 
Selector CrowdedTournament 
CrossoverProbability 0.5 
Crossover Multi 
MutationProbability 0.5 
Mutator (Manipulator) EB1: SinglePositionBitflip 

EB2: SomePositionsBitflip
  (Mut.Prob.: ଵ

଺
) 

EQ: Multi 
MaximumGenerations 100 
SelectedParents 200 

HL supports so called multi-operators, e.g. a multi-
crossover or multi-manipulator, which apply 1 of 𝑛 
specified operators randomly. The experiment using the 
binary vector encoding uses all crossovers available for 
this encoding, whereas the three experiments that use the 
qualification encoding utilize different sets of crossover 
operators: 

 EQ1: All proposed crossovers are enabled.
 EQ2: Only the DX is enabled.
 EQ3: Only the DX, UAX and OAX are enabled.

Furthermore, all experiments involving the qualification 
encoding apply a multi-manipulator, which chooses and 
executes one of all proposed manipulators randomly 
every time a mutation operation should be carried out. 
The binary vector encoding only offers two 
manipulators, which are evaluated separately (EB1+2). 
In case of the SomePositionsBitflip manipulator, the 
operators probability of flipping a bit has been set to  ଵ

ொ
, 

where 𝑄 ൌ 6, which is the number of qualifications. This 
means that on average, every 6th bit should be flipped, 
which corresponds to one qualification per worker. 
Each qualification configuration is simulated 20 times. 
Table 2 shows the used simulation parameters. In the 
tested scenario, only 46 workers are available, although 
the system is designed for a total of 48 workers. This 
makes it harder to find high quality solutions, more 
specifically, to find solutions that have high service 
levels. Furthermore, switching stations between lanes 
costs twice as much as switching stations within a lane. 

Table 2: The parameters of the simulation model. 
Name Value 

Change Time Ratio 10 % 
Cost FGI Inventory 1.0 
Cost Tardiness 19.0 
Cost WIP Inventory 0.5 
Dispatch Strategy FirstComeFirstServe 
Due Date (Fix) 1.0 
Due Date (Var) 100.0 
Due Date (CV) 0.0 
Interarrival Time (CV) 1.0 

Line 1

S0 S1

S2

S3

Product 1

Product 2

(8) (8)

(4)

(4)

Line 2

S4 S5

S6

S7

Product 3

Product 4

(8) (8)

(4)

(4)
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Line Change Factor 2.0 
Observation Time 3600.0 
Order Amount Factor 5.0 
Personnel Ratio 50 % 
Processing Time (CV) 0.25 
Qualifications 6 
Utilization 95 % 
Warmup Time 600.0 
Workers 46 

A total of 6 qualifications are required to operate all 
stations of the production system. Stations S0, S1, S2 and 
S3 are mapped to indices 0, 1 and 2 within a qualification 
group, S4, S5, S6 andS7 to indices 3, 4 and 5, as shown 
in Figure 15.  

Figure 15: A valid qualification configuration. 

This solution is interpreted as follows: 
 Group 1: 10 workers that can operate S1 and S5.
 Group 2: 11 workers that can operate S0 and S4.
 Group 3: 12 workers that can operate S0, S1 and

S6+S7.
 Group 4: 13 workers that can operate S2+S3.

4.2. Optimization Results 

Figure 16 shows the achieved qualities of all binary 
vector experiments (EB) and the experiments involving 
the specialized encoding (EQ). 

Figure 16: The achieved solution qualities from all 
conducted experiments. 

The sum of qualifications can range from 46 (i.e. one 
qualification per worker) to 276 (every worker is 
qualified for every station), the service level ranges from 
0.0 to 1.0 (100 %). The dashed box marks the zoomed-in 
area which is depicted again on the right side of the 

figure. A visual inspection of this result suggests that that 
the experiments that use the qualification encoding 
(EQ1–3) yield better results, compared to the binary 
vector encoding experiments (EB1+2). When looking at 
the solutions with the highest service level that where 
found by EB, one can observe that EQ found solutions 
with approximately the same service level, but 
significantly lower sums of qualifications. EB cannot 
reach the service levels found by EQ. Both sets of 
experiments found the solution with the minimal number 
of qualifications, i.e. 46 qualifications, which 
corresponds to 1 qualification per worker. 
The following empirical attainment function plots 
(López-Ibáñez, Paquete, and Stützle 2010) compare the 
dominated area of each experiment and thus show how 
the specialized encoding is able to outperform the binary 
vector encoding. Figure 17 indicates that there is a 
significant difference between EB1 and EB2. EB1 finds 
more solutions with qualities that reside in the lower left 
corner of the objective space, the upper right corner is 
dominated by EB2. 

Figure 17: EB1 vs. EB2. 

When comparing EB1 to EQ1–3, it is obvious that EQ is 
dominant in almost all areas of the objective space (see 
Figure 18; only EQ1 is shown here, comparisons with 
EQ2+3 look alike). 

Figure 18: EB1 vs. EQ1. 

Even though EB2 reaches higher quality levels than EB1, 
it is still dominated by EQ in all cases (see Figure 19; 
again, only EQ1 is shown here, comparisons with EQ2+3 
look alike). The highest service levels that are achieved 
by EB2 are also achieved by EQ, but with significantly 
less qualifications. 
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Figure 19: EB2 vs. EQ1. 

 
Finally, there are no significant differences between all 
EQ experiments, but EQ1 and EQ2 are slightly 
dominating EQ3 in the upper right area of the objective 
space (see Figures Figure 20, Figure 21 and Figure 22). 
 

 
Figure 20: EQ1 vs. EQ2. 

 

 
Figure 21: EQ1 vs. EQ3. 

 

 
Figure 22: EQ2 vs. EQ3. 

 
For EQ1–3, the chosen crossover and mutation operators 
have also been analysed with respect to their achieved 
success ratios. The success ratio Ψሺcሻ of crossover 𝑐 in 
one generation is defined as 
 

Ψሺ𝑐ሻ ൌ
𝑥௖
𝑦

 

 
, where 𝑥௖ is the number of offspring that was created by 
crossover 𝑐 and 𝑦 is the overall number of offspring that 
was created by all crossovers in this generation. The 

same success ratio can also be calculated for mutation 
operators. For EQ1, the UAX yielded the most offspring, 
followed by OAX and DX operators, as can be seen in 
Figure 23. When inspecting the success ratios of the 
mutation operators, all success ratios are smaller 
compared to crossover success ratios and the most 
successful operator seems to be the Remove-
Qualification-From-Group manipulator, as shown in 
Figure 24 for EQ1. 
 

 
Figure 23: The success ratios of all crossovers used in 
EQ1 throughout all generations. 
 

 
Figure 24: The success ratios of all manipulators used in 
EQ1 throughout all generations. 
 
5. CONCLUSION & OUTLOOK 
First tests with the new encoding show promising results. 
We conducted multiple experiments with NSGA-II using 
our new solution encoding and a simpler binary vector 
encoding. The obtained results show that using the new 
encoding, solutions with the same amount of 
qualifications, but higher service levels can be found. 
Furthermore, the algorithms are able to achieve higher 
service levels in general. Three different sets of 
crossovers have been used for testing the new solution 
encoding. EQ1–3 do not differ much in achieved solution 
qualities, which indicates that the respective crossover 
sets are all able to transfer the necessary building blocks 
to achieve high quality solutions. However, when 
analyzing crossover success ratios of EQ1, one can 
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observe that the UAX was the most successful crossover 
in this set. 
The proposed encoding can be extended in various ways. 
An idea is to introduce more solution creators which 
follow other strategies for constructing solutions. 
Specialized solution creators could for example use 
construction heuristics or introduce qualification groups 
according to predefined patterns, where e.g. a group is 
qualified for all stations within a line. Such predefined 
patterns have already been simulated in the 
aforementioned paper by Schober, Altendorfer, Karder, 
and Beham (2019), and some manually crafted 
configurations were even better than solutions optimized 
by NSGA-II. Another way to extend the proposed 
encoding is by adding more crossover or manipulation 
operators. 
Finally, the objectives that are optimized can be 
extended. So far, the only objectives that have been 
considered were service level and number of 
qualifications. In the future, we will also take the number 
of qualification groups into account in order to find good 
configurations with as few groups as possible. 
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