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ABSTRACT 
We describe a novel simulation of a contemporary real-
world financial exchange: London Stock Exchange (LSE) 
Turquoise, and we also introduce a newly-created 
adaptive automated trading strategy called ISHV, which 
exhibits realistic behavior in situations where large 
orders can radically shift prices before transactions 
occur. LSE Turquoise is a recently-introduced platform 
where buying and selling takes place on a pair of coupled 
trading pools: a lit pool that is visible to all traders; and a 
dark pool where large "block" orders are hidden from 
sight until they are automatically matched with a 
counterparty, after which the transaction is then revealed. 
Orders from traders are routed to the lit or dark pool 
depending on their size, and on the reputation of the 
trader issuing the order. Unlike all other public-domain 
adaptive trading strategies, ISHV can alter the prices it 
quotes in anticipation of adverse price changes that are 
likely to occur when orders for block-trades are publicly 
visible: so-called market impact. LSE Turquoise is 
intended to reduce the negative effects of market impact; 
something that we test with our simulator. We extend the 
existing BSE open-source exchange simulator to 
incorporate coupled lit and dark pools, naming the new 
system BSELD. We show ISHV exhibiting market 
impact in a lit-only pool, and discuss how a Turquoise-
style coupled dark pool reduces or eliminates that impact. 
We also show results from a Turquoise-style reputation-
tracking mechanism, which can be used for modulating 
trader access control to the dark pool.  

Keywords: financial markets, automated trading, dark 
pools, economic simulation. 

1. INTRODUCTION
In contemporary global financial markets, traders 
routinely interact by remotely accessing an electronic 
trading venue, an online financial exchange, where they 
can post various types of order that indicate the prices at 
which they seek to sell or to buy some quantity of a 
particular tradable asset. They do this in the hope of 
finding one or more counterparties, other traders from 
whom they can buy, or to whom they can sell; interaction 
mediated via the trading venue allows potential 
counterparties to negotiate and agree a fair price for each 
transaction. In this minimally simple characterization, 
electronic exchanges are nothing more than digital 
implementations of the open-outcry trading pits that most 

major financial exchanges operated before the advent of 
computerized trading. And, in turn, those trading pits 
were strikingly similar to the impromptu haggling 
between gatherings of buyers and sellers that has been an 
everyday occurrence at public markets and exchanges 
and souks and bazaars for many centuries.  
However, once major financial exchanges had switched 
from physical trading floors to virtual ones, opportunities 
then opened up for novel structures of market, for 
bringing buyers and sellers together to identify 
counterparties and for them to jointly agree a fair price 
for their transactions, in ways that are different from, or 
would simply not have been possible, if the exchange had 
not virtualized. That is, electronic markets can 
sometimes be created to offer trading-venue 
functionality that would have been difficult or impossible 
to achieve in a traditional bricks-and-mortar exchange.  
This is already trivially the case in major financial-
trading centers such as New York, London, Tokyo, and 
Hong Kong, where a few decades ago there would be 
only one major national exchange for trading equities 
(stocks and shares) and yet where today a trader typically 
has a choice of several venues on which any one trade 
could be executed (and, in some countries, where the 
venues are required by law to pass a trader's order to 
competitor-venues if that gives the trader a better price 
for her deal). Many of the new alternative trading venues 
have been created post-virtualization, after the economic 
and regulatory barriers to entry were lowered by making 
it feasible for trading venues to be operated from out-of-
town data-centers rather than prime real-estate in the 
center of major-city financial districts. However, such 
developments only scratch the surface of the new 
opportunities offered by fully electronic trading venues.  
Less trivially, in recent years innovative operators have 
offered new forms of online exchanges that are designed 
specifically to counteract aspects of traditional markets 
that had previously made business difficult for traders. 
Traders working for investment banks or major fund-
management companies, where their jobs require them to 
routinely handle "block orders", i.e. individual orders for 
very large quantities of an asset, face a particular problem 
known as market impact. A single order to buy 100,000 
shares in IBM will often not affect the price of IBM stock 
in the same way that 100 bids for 1,000 shares of IBM 
do. Major venue-operators such as the London Stock 
Exchange (LSE) now operate electronic markets that are 
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custom-designed to reduce or eliminate the negative 
effects of market impact for block traders.  
In brief, market impact is the name given to the effect 
experienced by traders when they try to execute a block 
(i.e., bulk) order, an order with a quantity so large that 
the sudden increase in supply (for sell orders, i.e. asks) 
or in demand (for buy orders, i.e. bids) means that other 
traders in the market — potential counterparties to the 
trade — recognize that the order is so big that it will shift 
the price of the asset in question: those potential 
counterparties then (entirely rationally) adjust the prices 
that they are willing to trade at, in a direction that is less 
attractive to the trader trying to initiate the block trade. 
This can be thought of as the counterparties guessing or 
estimating what price the asset will shift to and trade at 
after the block transaction has executed, and then setting 
that price for the transaction with the block trader before 
the price has actually shifted. 
An example will help to illustrate this. Say that the 
current price for a tradeable asset with ticker-symbol 
WXYZ is roughly $10, and that the usual size of a deal, 
the usual quantity traded in WXYZ, is 100 units. Then 
say that our trader Anne is looking to sell 20,000 units — 
200 times bigger than a regular-sized order: this 
definitely qualifies Anne as a block trader, for this 
particular deal. Before she does anything, Anne checks 
her trading screen and sees buy orders on the exchange 
from Bob, Carrie, and Dee: they are bidding at $9.98, 
$9.97, and $9.95, respectively. Anne asks these three 
potential buyers for their price on 20,000 WXYZ and 
they immediately respond with lowered prices of $7.03, 
$6.95, and $7.02, respectively. This means that Anne has 
seen a 30% reduction in the price she could get for her 
sale, merely because she revealed the size of her intended 
trade: the size caused her potential counterparties to 
factor into the deal their expectations of how the price 
would fall as a consequence of the sudden major increase 
in supply of WXYZ that would result from Anne’s deal 
executing. This 30% fall when selling is the market 
impact, the price moving against Anne. If Anne had 
instead been buying a similarly bulk deal, she would very 
likely have suffered impact in the other direction: the 
quoted price would have moved up, as the potential 
counterparties priced-in the effects of increased demand. 
If instead Anne had a way to signal her desire to trade but 
without fully revealing the size of her deal, and had 
waited for a while, maybe she could have found a willing 
counterparty, another block-trader looking to buy a big 
block who was happy with Anne’s asking price.  
That issue, of matching big block-traders (to their mutual 
advantage) without giving away details of the full size of 
each block-trader’s intended deal is something that has 
been addressed by exchange and trading-venue operators 
who offer what are known as dark pool exchange 
facilities. Dark pools offer access to financial liquidity, 
‘darkened’ so that key details of trader’s orders are 
concealed from the pool’s participants and observers, 
with only the trading-venue operator knowing the full 
details of the position of each trader in the pool. The 
venue operator matches bids and offers in the pool 
against those from willing counterparties, notifies the 
buyer and the seller that they have matched, and details 
of the trade are then made public after it has executed. 

Market impact is avoided because no-one can see in what 
quantity a participant is seeking to trade, until the trade 
is agreed and goes through. In contrast, traditional 
trading venues, exchanges with full transparency on 
quantities, are now known as lit trading pools.  
In the past 15 years much of the trading activity on 
electronic markets has become highly automated. That is, 
many or all of the entities trading on the exchange are no 
longer human traders, but instead are autonomous 
algorithmic trading systems buying and selling with little 
or no direct human control. Automated trading systems 
running on electronic markets typically process such vast 
quantities of data, and have such very short reaction 
times, that no human could ever hope to match their 
performance. Financial institutions that operate 
profitable trading desks treat details of their automated 
algorithmic trading systems as tightly-guarded 
commercial secrets, for the obvious reason that this is 
how they make their money, their competitive advantage. 
Nevertheless, there is a body of published work, a series 
of peer-reviewed academic papers and reputable 
university-level textbooks, that gives some insight on 
how adaptive automated trading systems are constructed. 
Since the mid-1990s researchers in universities and in the 
research labs of major corporations such as IBM and 
Hewlett-Packard have published details of various forms 
of trading strategy, often incorporating machine learning 
methods so that the automated trader can adapt its 
behaviors to prevailing market conditions.  Notable 
trading strategies in this body of literature include the 
MGD and GDX automated traders developed by IBM 
researchers (Tesauro & Das, 2001; Tesauro & Bredin, 
2002); the ZIP strategy developed at Hewlett-Packard 
(Cliff, 1997); HBL (Gjerstad, 2003); AA (Vytelingum, 
2006; Vytelingum et al., 2008); Roth-Erev (e.g. 
Pentapalli, 2008); and ASAD (Stotter et al. 2013). 
However, for reasons discussed at length in a recent 
review of key papers in the field (Cliff, 2019) this 
sequence of publications concentrated on the issue of 
developing trading strategies for regular-sized orders: 
none of the key papers explored in (Cliff, 2019) look at 
trading strategies for outsize block orders, and none of 
them directly explore the issue of how an automated 
trader can best deal with, or avoid, market impact.  
The lack of prior studies of automated trading strategies 
for block orders may be due to the complexity of the test-
environment that is required to evaluate such strategies. 
An automated block trader needs to act and interact in a 
market environment in which there are other traders, 
potential counterparties, that are capable of making 
reasonable guesses or estimates for where the price of the 
tradeable asset will shift to after the block trade has gone 
through: that is, the other traders need to react to block 
orders by exhibiting behavior that is reasonably 
describable as market impact in response to the arrival of 
a block order, and none of the public-domain algorithms 
listed above does that. Second, the trading venue in 
which the various traders are interacting needs to support 
the processing of orders that vary over a significant range 
of sizes, so that some orders are “small” and others 
“large” — large enough to have an impact effect. 
We report here on automated-trading experiments that 
are novel on two fronts, and which directly address that 
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complexity. First, we show how an existing trading 
strategy can be modified in such a way that impact effects 
are exhibited when a block order is submitted to a market 
populated by those traders. For our market environment, 
we use the free public-domain open-source BSE 
exchange simulator (BSE, 2012) which provides much of 
the functionality of a traditional trading venue and comes 
with pre-coded versions of a variety of automated trading 
strategies. We then report on our work altering and 
extending BSE so that it is a model of the Turquoise 
Plato trading venue recently announced by the London 
Stock Exchange (LSE). Turquoise is a trading platform 
founded in 2008 and is now majority owned by the 
London Stock Exchange Group (LSEG). Turquoise 
features a lit order book called Turquoise LitTM and a 
coupled dark order book called Turquoise PlatoTM. 
Turquoise Plato incorporates a novel reputation-tracking 
mechanism to encourage desirable behaviors in the 
traders using the dark pool. We refer to the extended BSE 
as BSELD: BSE with Lit and Dark venues. The 
experiments we report here are the first to demonstrate 
that populations of automated traders can exhibit market 
impact effects in a traditional venue like BSE, and that 
the impact effect is reduced when the BSELD venue 
structure is used instead. Our simulator allows us to 
explore the effects that different aspects of the BSELD 
architecture have on the overall market dynamics, and to 
evaluate trading algorithms designed to operate in such a 
contemporary trading environment.  
In Section 2 we review the motivations for our work and 
relevant previous literature. In Section 3 we demonstrate 
the way in which automated traders can alter their quote-
prices in response to the arrival of individual block 
orders, which is a useful model of large-block market 
impact, and we show results that illustrate the impact 
effects in trading sessions on the traditional lit-only BSE. 
In Section 4 we compare and contrast the outcomes for 
block traders in the paired lit/dark market structure 
offered in BSELD: via a simple argument, it can be seen 
that the addition of an appropriately coupled dark pool 
will indeed greatly reduce (or eliminate) size impact 
effects. Section 5 then describes the reputation system. 

2. BACKGROUND: FINANCIAL MARKETS
In contemporary global financial markets, traders 
routinely interact by remotely accessing an electronic 
trading venue, an online financial exchange. Financial 
exchanges typically allow traders to buy or sell varying 
quantities of any of a large number of tradeable assets, 
and different exchanges specialize in different asset-
classes: for example, in London the primary market for 
equities (stocks and shares) is the London Stock 
Exchange; the primary market for metals is the London 
Metal Exchange; and the primary market for derivatives 
(tradeable options and futures contracts) is the ICE 
Futures Europe Exchange (originally founded as the 
London International Financial Futures Exchange, 
LIFFE, with its name subsequently changing as a result 
of a succession of corporate acquisitions and mergers). 
Exchanges typically operate as a venue in which buyers 
and sellers can interact, typically via buyers submitting 
bids and sellers submitting asks (also known as offers) 
with the exchange accepting the buyers' bid orders and 

the sellers' ask orders, and implementing some kind of 
matching process that enables traders to identify a willing 
counterparty for a transaction that then takes place at an 
agreed price, one which both parties consider fair.  
Without loss of generality, we will consider here the 
market for only a single, anonymous, tradeable asset, and 
we will concentrate on the data-structure at the heart of 
operating an exchange in almost any class of tradable 
asset: that data-structure is the Limit Order Book (LOB). 
The LOB is typically published by the exchange and 
distributed to all traders simultaneously any time it 
changes. At any one time the LOB shows a summary of 
unexecuted orders that have been submitted by traders 
active in that market. The orders summarized on the LOB 
are of a specific type, known technically as limit orders. 
A trader in a market can typically chose to submit an 
order to the exchange either to buy or sell at whatever the 
current best available price is, this order-type is known 
as a market order; or a trader can choose to submit a limit 
order, one that specifies a limit price, a price that the 
asset is not yet trading at. When a trader submits a limit 
order to the exchange, that order is then held on the 
exchange's books until a counterparty can be identified 
that is willing to trade at a price that is equal or better 
than the order's indicated limit price: the book on which 
the limit orders are recorded at the exchange is the LOB. 
Because orders are fundamentally either bids or asks, the 
LOB is routinely spoken about as being divided into two 
sides: the bid side and the ask side. The best bid on the 
LOB is the one with the highest limit price, and the best 
ask is the one with the lowest limit price: the LOB is 
usually shown with the best bid and ask at the top, and 
with less competitively priced orders arranged below 
them in numeric order of price (descending for bids, 
ascending for asks). The quantity of the asset available at 
each price is also indicated on each side of the LOB, 
although the identities of the traders behind each order 
are typically not shown, so the LOB acts an aggregator 
and an anonymizer of individual orders.  
The difference between the best bid price Pb and the best 
ask price Pa is known as the spread, and the mid-point of 
the spread (i.e., the arithmetic mean, (Pa + Pb)/2 ) is the 
midprice, which is very commonly used in situations 
where a single price value is required to summarize the 
state of the market for that asset. An illustration of a LOB 
is provided in Figure 1. Prices are usually quantized to 
some atomic resolution known as the tick-size: in very 
many exchanges the tick size is one cent or one penny, 
i.e. 1/100th of a unit of fiat currency. For further details 
of exchanges and the LOB see e.g. Harris (2002) or 
Cartea et al. (2015), 
When a trader submits an order to the exchange, if it is a 
bid with a price greater than the current best ask-price, or 
an ask with a price lower than the current best bid-price, 
then the order is said to cross the spread, and that is 
interpreted as an indication that the trader submitting the 
order wishes to trade at the best price on the counterparty 
side of the LOB – known as lifting the ask (for an 
incoming bid that crosses the spread) or hitting the bid 
(for an incoming ask that crosses the spread). That is, a 
spread-crossing limit order is effectively a market order.  
Because any spread-crossing quote issued by a trader is 
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immediately executed (i.e., immediately results in a 
transaction occurring, consuming some quantity of the 
limit orders on the counterparty side of the LOB), the 
best bid and best ask on the LOB at any one time will 
always be different values and hence values for the 
spread are bounded from below by the tick-size.  

Figure 1: a Limit Order Book (LOB) presented in the 
conventional format: the left-hand side of the LOB is the Bid-
book, the right hand side is the Ask-book. Prices are displayed 
as integer numbers of cents, so the tick-size is $0.01. On each 
side of the LOB, prices are arranged top-to-bottom in order best 
to worst, so the highest bid price and the lowest ask price are at 
the top of the book. The columns at outside left and right, 
labelled "Qty", show the quantity of items available at that 
price. In this example the spread is $2.00-$1.00=$1.00, and the 
midprice is ($1.00+$2.00)/2 = $150. 

Over the course of the 20th Century, trading activity on 
major exchanges transitioned from open-outcry trading 
pits to remote, electronically mediated communications. 
In the trading pits, which had often operated for well over 
100 years, human traders gathered in close physical 
proximity and shouted and gestured at one another to 
directly signal their bids and offers. As relevant 
technology became cheap and reliable, traders no longer 
gathered at the exchange but instead communicated 
remotely: first by telephone; then via dedicated computer 
networks; and latterly using Internet and Web channels. 
Nevertheless, at the turn of the 21st Century, almost all 
traders active in any one major financial market would 
be human. In the past 15 years, that situation has changed 
significantly and now most trades in "spot" (immediate-
execution) financial markets for a wide range of assets 
are dominated by robot traders, automated software 
systems using artificial intelligence (AI) and machine 
learning (ML) techniques that have replaced the human 
traders because trading machines are much faster, much 
more reliable, and much cheaper than human employees. 
This development, the rise of automated trading (and its 
potential ill effects) has been documented and discussed 
by various authors including Arnuk & Saluzzi (2012), 
Bodek & Dolgopolov (2015), Narang (2013), Patterson 
(2013), and Rodgers (2016). 
For the purposes of this discussion, a key initial academic 
paper was the surprising set of results published in the 
prestigious Journal of Political Economy by Gode & 
Sunder (1993): this introduced a minimally simple 
automated trading algorithm now commonly referred to 
as ZIC. Four years later two closely related research 
papers were published independently and at roughly the 
same time, each written without knowledge of the other: 
the first was by Cliff (1997) describing the adaptive 
trading-agent strategy known as the ZIP algorithm; the 

second by Gjerstad & Dickhaut (1998), describing an 
adaptive trading algorithm now widely known as GD.  
Gjerstad later moved to IBM’s TJ Watson Labs where he 
helped set up a laboratory facility that was used in a study 
that generated world-wide media coverage when the 
results were published by Das et al. at IJCAI-2001, the 
prestigious International Joint Conference on Artificial 
Intelligence. This paper presented results from 
experiments exploring the behavior of human traders 
interacting with GD and ZIP robot traders, in a LOB-
based financial exchange, and demonstrated that both 
GD and ZIP reliably outperformed human traders. 
Neither GD nor ZIP had been designed to work with the 
LOB, so the IBM team modified both strategies for their 
study. A follow-on 2001 paper by Tesauro & Das (two 
co-authors of the IBM IJCAI paper) described a more 
extensively Modified GD (MGD) strategy, and later 
Tesauro & Bredin (2002) described the GD eXtended 
(GDX) strategy. Both MGD and GDX were each claimed 
to be the strongest-known public-domain trading 
strategies at the times of their publication.  
Subsequently, Vytelingum’s 2006 thesis introduced the 
Adaptive Aggressive (AA) strategy which, in a paper 
published in the Artificial Intelligence journal 
(Vytelingum et al., 2007), and in later AI conference 
papers (De Luca & Cliff 2012a, 2012b), was argued to 
be dominant over ZIP, GDX, and human traders, and 
hence the strongest-known public-domain robot trader. 
Recent work (Vach, 2015; Cliff, 2019) has called into 
question the supposed dominance of AA over GDX and 
ZIP, but all three of these trading algorithms can 
outperform human traders.  

3. MODELLING MARKET IMPACT
The essence of market impact was sketched in the 
example story involving Anne, Bob, Carrie, and Dee that 
was given in Section 1. For the purposes of the discussion 
in  this paper, here we will more precisely define market 
impact as the situation in which the market mechanism 
(e.g., the LOB) for some tradeable asset A shows the best 
price B(t) available from potential counterparties at time 
t, and where at time t1 a trader T signals an intent to 
transact a large quantity Q of asset A at a price equal to 
or better than B(t1), and this immediately results in 
B(t1+Dt) worsening with respect to the transaction 
intended by T, before any actual transaction has yet 
taken place. Here "better than B(t)" means a higher price 
if T is buying, and a lower price if T is selling; and 
"worsening" means the price B increasing if T is 
intending to buy, and decreasing if T is intending to sell. 
Similarly, "a large quantity Q" can be interpreted as any 
quantity sufficiently large, relative to the quantity 
previously available at the then-current best counterparty 
price, to cause a significant shift in B: a factor of 10 or 
more is usually sufficient.   
From this definition, it is clear that the quantities bid or 
offered at various prices in the auction are the driving 
factors of market impact. However, to the best of our 
knowledge, none of the automated trading strategies 
mentioned in Section 2 incorporate any reasoning about 
order-quantity effects: neither in the original publications 
that introduce each strategy, nor in any later publications 
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that describe subsequent use of those strategies. Because 
of this, one novel aspect of our work described here is 
our demonstration of size impact effects in markets 
populated by artificial trading agents: we are not aware 
of any previous publications that have demonstrated this. 
In this paper we focus initially on exploring impact 
effects in markets populated by traders running an 
adapted form of the SHVR strategy that is built-in to BSE 
(see BSE 2012, Cliff 2018a). SHVR operates by 
attempting to always beat the best bid or offer: if a SHVR 
is selling, it will issue a quote that shaves one cent off the 
best ask price on the LOB so long as it is able to do so; 
and if SHVR is buying it will issue a quote adding one 
cent to the LOB's best bid price (thereby shaving one cent 
off its potential profit). SHVR is an attractive first choice 
because of its simplicity; extending the methods and 
results presented here to working with other more 
sophisticated adaptive strategies such as ZIP, GDX and 
AA are obvious topics for further work. 
We extended the open-source code for SHVR traders 
such that their quote prices will, in appropriate 
circumstances, be determined by a function, an 
algorithm, that takes order-quantity into account. Our 
alteration involves making the traders sensitive to the 
market's current microprice. The microprice (see e.g. 
Cartea et al. 2015) is a statistic that is related to the 
midprice but whereas the midprice is calculated only 
from price data, the microprice is a quantity-weighted 
calculation. If the LOB's current best bid price and 
quantity are denoted by Pb and Qb respectively, and the 
current besk ask price and quantity by Pa and Qa 
respectively, then the microprice Pµ is given by: 

Pµ =  Pa (Qb / (Qa+Qb)) + Pb (Qa / (Qa+Qb)) 

When Qa = Qb  this reduces to the equation for the 
midprice Pm, but as the difference or imbalance between 
Qa and Qb  grows so the difference between Pµ and Pm 
increases, with Pm remaining constant but Pµ moving in 
the direction that subsequent transaction prices can 
reasonably expect to head in, given the current imbalance 
in supply and demand and assuming all other things 
remain equal. This captures the intuitive notion that, in 
times of excess demand, competition among buyers is 
likely to push prices up toward the best ask price, while 
in times of excess supply, competition among sellers is 
likely to push prices down toward the best bid price: in 
each case, the microprice moves in the corresponding 
direction. An important factor to note here is that the 
microprice gives an indication of the expected direction 
of change in transaction prices, before any transactions 
affected by market impact have actually taken place. 
Figure 2 illustrates the effect that size imbalances at the 
top of the LOB can have on the microprice: The left-hand 
table illustrates the case where there is excess demand; 
the right-hand table shows a situation with excess supply. 
The midprice is the same in each case, but the size 
imbalance skews the microprice either down or up, 
depending on whether there is an excess of supply or 
demand. The D value indicated above each table is the 
difference between the midprice and the microprice.  

To distinguish the original SHVR from the 
adapted/extended version, we will refer to the latter as 

ISHV (pronounced eye-shave; the I can stand for 
imbalance, or for impact). 

Figure 2: effects of size imbalances on the microprice. 

In the current version of ISHV, the amount that the trader 
shaves off the current best counterparty price on the LOB 
(denoted by Ds, and which in the original SHVR was a 
constant, equal to the exchange's tick-size Dp) is 
determined by the imbalance at the top of the LOB, the 
difference between the midprice and the microprice, 
which we refer to as Dm: 

Dm = Pµ  –  Pm

Intuitively, if there is no imbalance, Dm~0; if Dm>>0, 
the imbalance indicates that subsequent transaction 
prices will increase; and if Dm<<0, the indication is that 
prices will subsequently fall. This can be formalized in 
ISHV by defining an impact function, F, that maps from 
Dm to Ds, i.e. Ds=F(Dm). We have explored a number of 
forms for the impact function, and the results that we 
present here have been generated from a simple linear 
form expressed as pseudocode in Figure 3. 
The rationale for this impact function is straightforward: 
at the macro level buyers and sellers react in 
symmetrically complementary ways; if the imbalance 
indicates that the price will be worsening for a trader, the 
trader reacts by attempting to shave a proportionately 
larger amount off of the best price on the LOB, thereby 
lowering its potential profit on the trade, but at least 
trying to "stay in the game", maintaining its chances of 
actually getting a deal. Conversely, if the imbalance 
indicates that prices will be improving for the trader (i.e., 
prices are likely to move in favor of the trader, because 
of excess quantity on the counterparty side of the book), 
the ISHV trader reduces the amount it shaves off the best 
price: here, it sets the shave-amount to the smallest 
possible, the exchange's tick-size Dp. Finally, for that 
reduction in shaving when the price is moving in the 
trader's favor to be meaningful, ISHV's "default" shave-
amount at Dm = 0 (which was uniformly Dp for the 
original SHVR) the constant C should be >1: here we use 
C=2. In the current impact function, for both buyers and 
sellers, the scaling of Ds as |Dm| increases is linear with 
M=1: avenues for further research include studying the 
effects of varying the values of C and M, and/or using a 
nonlinear form for F(Dm). 
To explore the extent to which a BSE market populated 
with ISHV traders can act as a reasonable model of 
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market impact, we devised experiments that are 
somewhat artificial in comparison to the dynamics of real 
markets, but in which the artificial constraints have been 
introduced to help clarify any market impact effects. We 
create a market with N buyers and N sellers, and initially 
all buyers and sellers are given assignments to trade in 
maximum quantities of one (so, after traders have issued 
quotes to the exchange, the quantity columns in the LOB 
resemble those of Figure 1), and with prices according to 
a fixed supply and demand schedule with a known 
underlying theoretical equilibrium price, denoted by P0. 
Traders are given a period of time to interact via the 
exchange's LOB-based auction mechanism, settling to a 
steady state, and then at a specific time a lone trader is 
given an assignment to either buy or sell a large quantity 
of the asset at a price which places that trader's order at 
the top of the LOB (creating a situation on the LOB much 
like those illustrated in Figure 2). This single large order 
can be thought of as a step-change "shock" to the market; 
albeit a quantity-shock rather than a price-shock. We 
then monitor what happens to the prices quoted on the 
LOB, and to any subsequent transaction prices, as the 
traders in the market respond and adapt to the post-shock 
conditions. 

    if (buying) 
    then if Dm < 0  

    then Ds = Dp 
    else Ds = CDp + M.Dm.Dp 
    if Pb + Ds <= plim

    then q = Pb + Ds 
    else  q = plim 

    if (selling) 
    then if Dm > 0  

    then Ds = Dp 
    else Ds = CDp – M.Dm.Dp 
    if Pa – Ds >= plim

    then q = Pa – Ds 
    else  q = plim 

Figure 3: pseudocode for the ISHV imbalance-sensitive 
decision tree that sets Ds, the amount an ISHV attempts to shave 
off the current best price on the LOB, and then uses that to set 
q, the price that the trader quotes in the market. Dm is the 
difference between the microprice and the midprice; Dp is the 
exchange's tick-size; plim is the limit price on the current 
assignment (i.e., the customer order being worked); Pa is the 
price of the best ask on the LOB; Pb is the price of the best bid; 
and the constants C and M are parameters that determine the 
ISHV's linear response to the imbalance.  

It is important to note that our work differs from the 
norm in studies of market dynamics because we are 
primarily focused here on changes in the prices that are 
quoted by the traders in response to an imbalance 
occurring at the top of the LOB, before the next 
transaction takes place, rather than on the nature of the 
longer-term time series of a sequence of successive 
transactions in that market. Because the system is 
inherently stochastic, we repeat this basic shock-test 
some number of times, and then generate relevant 
visualizations and calculate summary statistics. 
Figure 4 shows the typical price dynamics of a market 
populated homogeneously by 20 ISHV traders (i.e., 
N=10) and in which no quantity shock occurs. Fresh 

customer orders (i.e, exogenous commands to either buy 
or to sell a specified quantity of the asset, with an 
associated maximum-purchase-price or minimum-sale-
price) are assigned to the 10 buyers and the 10 sellers 
every 20 seconds, starting at t=20: the graph shows the 
prices quoted by each of the 10 buyers and 10 sellers. For 
each ISHV trader, after it has been assigned a customer 
order, it then quotes a price when prompted to: if its side 
of the LOB is empty, the price it quotes is based on the 
limit price for its current assignment; but if its side of the 
LOB does already show a best price, then ISHV attempts 
to improve on that price by calculating its own value for 
Ds  according to the method shown in Figure 3, and then 
adding that Ds to the best price (when the assignment is 
to buy) or subtracting it (when the assignment is to sell). 
As can be seen from Figure 4, the prices quoted by a 
population of ISHV buyers and sellers converge and 
meet at a value close to (but not necessarily exactly equal 
to) P0, and transactions then occur when the prices 
quoted by the traders start to cross the spread. The 
convergence is steady and stable (i.e., once converged, 
the transaction prices remain close to P0), and repeats 
once every 20 seconds as fresh assignments are 
distributed to the traders. Figure 5 shows the market 
impact effects of a single buy order suddenly increasing 
the quantity supplied, pushing the prices up rapidly 
before a transaction occurs; for brevity we do not show 
here a similar figure illustrating the corresponding 
market impact effect of a single sell order suddenly 
increasing the quantity demanded, but the dynamics in 
that case are very similar: arrival of a sell block order 
pushes the prices down before a transaction occurs. In 
both cases, arrival of a block order triggers a a price move 
against the block trader: when trying to execute a large 
buy order, quoted prices rise; when trying to execute a 
large sell order, quoted prices fall; and in both cases the 
price shift occurs before any transaction takes place. 
These results demonstrate that, in the single lit-pool 
version of BSE populated by ISHV traders, market 
impact is as genuine a concern as in real markets: that is, 
the dynamics of our model market do capture size impact 
effects, and so can function as a valuable first 
approximation for studying impact effects in real-world 
markets. Having established that our simulated market 
traders can now demonstrate market impact effects, the 
next section briefly describes our extension of BSE to 
incorporate a coupled dark pool, and discusses its 
effectiveness in reducing market impact. 

4. DARK POOL CUTS MARKET IMPACT
We altered the public-domain source-code of BSE, 
extending its functionality to include a coupled pair of 
dark and lit pools. In the first instance, the two pools are 
identical objects: each has the full LOB functionality of 
the original BSE lit-only trading pool, except that that 
details of orders sat on the dark pool are not published by 
the exchange, i.e. the traders do not know any details of 
orders sat on the dark LOB, other than their own orders. 
A very simple order-routing mechanism was 
implemented whereby, when the exchange receives an 
order, if the size of the order is below a threshold value 
then the order is "small" and is sent to the lit pool for 
processing, whereas orders larger than the threshold are 
"block" sized and hence processed by the dark pool. 
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Because ISHV traders use only the lit-pool microprice, 
this simple mechanism is sufficient to eliminate market 
impact effects for orders sized above the block threshold: 
now larger orders do not appear on the lit LOB, and so 
the prices quoted by the population of ISHV traders are 
now unaffected by the arrival of any such block orders.  

Figure 4 time-series of the prices being quoted by 20 ISHV 
traders (10 buyers and 10 sellers) across three successive batch 
assignments of customer orders: horizontal axis is time; vertical 
axis is price; each trader's current quote-price is represented by 
a single line. Fresh customer orders, one order per trader and 
each order for a quantity of one, are redistributed every 20 
seconds:  price competition among the sellers and buyers 
results in convergence toward prices close to the P0 value of 
$1.00 (indicated by the horizontal dashed line). After each 
batch of assignments, the actual price converged to varies 
slightly from the underlying P0 value, but the deviation is never 
large.  

Figure 5: quote-prices and transaction prices showing quantity-
impact effect in a market populated entirely by ISHV traders. 
These data come from the same structure of experiment as 
described in the caption to Figure 4, but here all the traders' 
individual quote-prices are the same pale blue colour, and the 
time and price of individual transactions are illustrated as red 
circles. At time t=60 (indicated by the vertical dashed line), a 
single large buy order (quantity=200) is assigned to one trader, 
imposing a step-change quantity shock on the market's demand 
schedule. The ISHV strategy detects the imbalance between 
supply and demand at the top of the LOB and reacts by rapidly 
increasing buyer's quote prices before any transactions take 
place: transactions then occur at prices around $1.50, a large 
deviation from P0. After that, the large order is removed from 
the market and prices return to the previous equilibrium.  

It is important to note that, in practice, the effectiveness 
of such a simple coupled lit/dark pair of pools is 
potentially open to exploitation by unscrupulous traders 
who deliberately submit orders with sizes large enough 
to be routed to the dark pool, but who then delete those 
orders once they have partially completed (i.e., once they 
have been matched with one or more smaller orders). To 
guard against this, LSE Turquoise has mechanisms for 
tracking the "reputation" of traders who use the dark 
pool, and only traders with a sufficiently high reputation 

are permitted ongoing use. Our simulation of the LSE 
Turquoise reputation-based access system, described in 
detail in (Church, 2019), is discussed in the next section. 

5. REPUTATIONAL DARK POOL ACCESS
Turquoise Lit is a LOB-based exchange in which the 
LOB is made visible to all participants, and hence 
Turquoise Lit can be simulated by the existing BSE 
functionality as documented by Cliff (2018a, 2018b) and 
does not need to be discussed further here. However, 
BSE does not have any dark-pool functionality, nor any 
reputation-scoring system, and so the focus in this 
section is on describing those two aspects of LSE 
Turquoise. In Section 5.1 we introduce the Plato dark 
pool, and then in Sections 5.2 to 5.6 we introduce various 
aspects of the Plato operation that are involved in the 
reputational scoring, which is described in Section 5.7. 

5.1. The Turquoise Plato Dark Pool 
Plato is the dark pool service offered by Turquoise. 
Orders submitted to Turquoise Plato are added to the 
Turquoise Plato Order Book, which we refer to here as 
TPOB. TPOB is not made visible to the participants in 
Turquoise Plato, as is expected of a dark pool trading 
venue; however, the details of each trade that takes place 
are subsequently made public, after the trade completes. 
The Turquoise documentation refers to bids as buy 
orders and asks as sell orders, so we use that terminology 
here. Buy orders rest on the buy side of TPOB and sell 
orders rest on the sell side of TPOB. All trades that take 
place within Turquoise Plato execute at the midprice of 
the LOB on the primary (i.e., lit) market for the financial 
instrument being traded. The primary market is the 
trading venue where the financial instrument was first 
admitted to trading. Orders submitted to Turquoise Plato 
can specify an optional limit price. For an order with a 
limit price to be able execute, the limit price must be 
better than the current primary market midprice. Orders 
can also specify an optional Minimum Execution Size 
(MES). The MES specifies the minimum quantity that 
can be traded in that order. For example, say that a trader 
submits a buy order X with a quantity of 20 and a MES 
of 10. Say that another trader submits a sell order Y with 
a quantity of 15 and a MES of 12. These orders can be 
matched for a trade since the quantity of each order is 
greater than the MES of the other order. A quantity of 15 
will be traded in this case. Now, let’s say that instead of 
sell order Y, a sell order Z was submitted with a quantity 
of 9 and a MES of 5. In this case the buy order X and sell 
order Z will not be matched for a trade since the quantity 
of Z is less than the MES of X. Orders also have a 
duration attribute which determines how long the order 
will rest on TPOB, if at all. The duration can be set as 
Fill-or-Kill (FOK), which means that the order must be 
able to execute immediately and in full or it will not be 
executed at all, and will not be added to TPOB. The 
duration can also be set as Immediate-or-Cancel (IOC), 
meaning that the order must be able to execute 
immediately either fully or partially otherwise it will be 
cancelled; if the order is only partially executed then the 
remaining quantity of the order will not be added to 
TPOB. The duration of an order may also be specified as 
an expiration time which will cause the order to rest on 
TPOB until either it is fully executed or the expiration 
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time is reached. Orders that lie on TPOB until execution 
or expiry are known as persistent orders.  
Persistent orders with larger quantities are given a higher 
priority when order-matching occurs. If two orders have 
the same quantity, then the order with the earlier arrival 
time is given the higher priority. If an order is only 
partially executed, the remaining unexecuted portion of 
that order maintains the priority that the whole order was 
first assigned on the basis of its initial quantity. 
When trying to match persistent orders, matching starts 
with the highest-priority buy order. The sell orders are 
then checked in priority order, from highest to lowest, to 
see if they can match with the buy order for a trade. If no 
match is found for this buy order, then the next highest 
priority buy order is selected for matching, and the 
process is repeated. When a match is found between a 
buy order and a sell order, the trade is executed. This 
process of matching orders and executing trades operates 
continuously and is referred to as continuous matching 
mode. 
5.2. Block Discovery 
Turquoise Plato offers an additional service called Block 
Discovery which is intended to be used by traders that 
wish to place block orders. Block Discovery allows a 
trader to first tentatively identify if there are any 
counterparties that can match their block order before 
they commit to submitting a firm order. This is done by 
the trader first submitting a Block Indication (BI). A BI 
is an indication to the exchange that a trader wants to 
place a block order, but this is not yet a firm order. Within 
the BI, the trader specifies the details of the firm order 
that they are interested in submitting. This includes the 
quantity, the limit price, the MES, and the duration. 
Turquoise’s matching logic then attempts to match the 
trader's BI with another BI submitted by a different 
trader. Once a match between two BIs is found, the 
traders that submitted the BIs are each sent an Order 
Submission Request (OSR) notifying them of the match. 
The OSRs ask the traders to convert their BIs into firm 
orders by sending a Qualifying Block Order (QBO). The 
QBO specifies the final details of the firm order that the 
trader will now be submitting. The details that a trader 
specifies in a QBO can be different from the original 
details specified in the BI. Each trader has a reputational 
score, and if the details specified in the submitted QBO 
are different from the corresponding BI, then the trader's 
reputational score may be negatively affected. Once the 
QBOs are received from both traders, the firm orders 
specified in the QBOs are submitted to the TPOB. The 
matching of these orders and the execution of the trade 
will then take place. To summarize, the main steps that 
occur in the Block Discovery process are: (1) a trader 
submits a BI; (2) if a match is found for that BI, then the 
trader is sent an OSR to notify them; (3) the trader places 
a firm order by submitting a QBO; (4) the firm order is 
added to the TPOB and the trade takes place; (5) the 
trader's reputational score is updated. 

5.3. Block Indication (BI) 
A BI is not a firm order, but an indication to the Block 
Discovery service that the trader is interested in placing 
a firm order. The trader first wants to see if any 
counterparty can match their order. The BI contains 

details about the firm order that the trader would like to 
place, such as the quantity, the limit price, the MES, and 
the duration. The limit price and the MES are optional 
and can be omitted. The quantity specified in the BI must 
be greater than the Minimum Indication Value (MIV) for 
the financial instrument being traded. If the quantity is 
not greater than the MIV, then the BI will be rejected by 
the Block Discovery service. Whenever a BI is added to 
the exchange, a check is performed to see if any 
submitted BIs can be matched for trading. The priority of 
each BI in the matching process is determined in the 
same way as it is for orders. If the BI specifies an MES 
and/or a limit price, then these values are considered in 
the matching process. Once a match is found for a BI, 
then the trader is sent an OSR to notify them. 
5.4. Order Submission Request (OSR) 
An Order Submission Request is sent to a trader to notify 
them when a match is found for a BI that they submitted. 
The OSR does not include any details about the 
counterparty or the counterparty's BI that it was matched 
with. The OSR is also used to notify the trader of their 
reputational score. Upon receiving an OSR, a trader is 
expected to respond with a QBO in order to submit a firm 
order. 
5.5. Qualifying Block Order (QBO) 
A Qualifying Block Order is sent by a trader to the 
exchange upon receipt of an OSR. The OSR tells the 
trader that their BI has been matched with another BI on 
the exchange. The QBO is a confirmation of their BI; 
turning their indication into a firm order. The details 
specified in the QBO may be different from the details 
specified in the original BI. This recognizes that 
sometimes a trader's preferences or circumstances 
change after a BI is submitted. For example, the QBO 
could specify a smaller quantity or a higher limit price 
that in the original BI. The differing details between a 
QBO and the corresponding BI will affect the trader's 
reputational score. If a QBO's details are sufficiently 
different from the original BI that the trade becomes 
impossible, this will have a negative impact on the 
trader's reputational score. Once the QBOs are received 
from both traders, the firm orders are added to the TPOB 
and the trade can take place. 

5.6. Block Discovery Notification (BDN) 
When a trader submits an order, they can specify whether 
the order is a Block Discovery Notification (BDN). If an 
order is a BDN, then the order is eligible for participation 
in the Block Discovery service. This means that the order 
may end up getting matched with a BI. An order can only 
be a BDN if the quantity of the order is greater than the 
Minimum Notification Value for the financial instrument 
being traded. If the order is matched with a BI, then the 
trader that submitted the BI is notified with an OSR as 
usual. The trader that submitted the BI is not made aware 
that they have been matched with a BDN order. 

5.7. Reputational Scoring 
The Block Discovery service monitors each trader’s 
conversion from BIs to QBOs with a reputational scoring 
system. A trader is given an event reputational score 
(ERS) every time they convert a BI into a QBO. A QBO 
should be marketable in comparison to its corresponding 
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BI. In relation to price, a QBO is marketable if it meets 
any of the following criteria:  

• The BI does not specify a limit price and the QBO
does not specify a limit price.

• The BI specifies a limit price and the QBO does not
specify a limit price.

• The BI specifies a limit price and the QBO specifies
a more marketable limit price. When buying, this
means that the QBO limit price must be greater than
the BI limit price. When selling, this means that the
QBO limit price must be less than the BI limit price.

In relation to the MES, a QBO is marketable if it meets 
any of the following criteria: 

• The BI does not specify an MES and the QBO does
not specify an MES.

• The BI specifies an MES and the QBO does not
specify an MES.

• The BI specifies an MES, and the QBO specifies an
MES that is less than or equal to the BI's MES.

If a QBO is not marketable, then the ERS given to the 
trader is zero. If the QBO is marketable, then the ERS is 
calculated by considering the difference in the quantity 
specified in the BI and the quantity specified in the QBO. 
The resulting ERS will be between 50 and 100. The exact 
formula used to calculate the score in this case is not 
explicitly specified in the public documentation for 
Turquoise Plato, so in our simulation we have a heuristic 
rule that can be edited to explore different approaches. 
A trader's composite reputational score (CRS) is 
calculated from a weighted sum of their last 50 individual 
ERSs, with more recent scores having higher weights. A 
trader is notified of their CRS in every OSR that they 
receive. If a trader's CRS falls below the exchange's 
Reputational Score Threshold (RST), then the trader will 
no longer have access to the Block Discovery service. A 
trader's CRS persists from one day to the next; any trader 
with a CRS less than the RST can in principle increase it 
over time by issuing a succession of BIs and matching 
QBOs where each QBO does meet the commitments of 
the corresponding BI.  
Figure 6, from Church (2019), shows how an individual 
trader's CRS changes over time when the trader 
consistently responds with a QBO having the exact same 
details as the corresponding originally submitted BI. The 
trader receives an ERS of 100 every time they convert a 
BI into a QBO which results in the trader's CRS rising 
over time.  
Figure 7, also from Church (2019), shows how an 
individual trader's CRS changes over time when it 
consistently returns a QBO with a quantity half that of 
the originally submitted BI. This results in the trader 
receiving an ERS of 50 every time they convert a BI into 
a QBO. This causes the trader's CRS to fall from its initial 
value over time. Eventually, the trader's CRS falls below 
the RST:  at this point, the trader is no longer allowed to 
participate in the Block Discovery service. 

Figure 6: rise in a single trader's composite reputational score 
over time, when the trader is consistently responding with 
QBOs that match the corresponding BIs. 

Figure 7: fall in a single trader's composite reputational score 
over time, when the trader is consistently responding with 
QBOs that are under-sized with respect to the corresponding 
BIs: eventually the composite reputational score falls below the 
system's RST and the trader can no longer access the Block 
Discovery service.  

6. FUTURE WORK

Currently one aspect of our BSELD simulator that 
requires further work is the implementation of 
functionality that models Turquoise Plato Uncross. 
Uncross events occur many times in each trading day. 
These events are triggered by the matching of block 
indications, or at random time intervals if no triggers 
have fired for a sufficiently long time. 
Further work could also be devoted to taking ISHV's use 
of the difference between the market's midprice and 
microprice as an indicator of order-book imbalance 
likely to have an impact effect, and incorporating that or 
a similar mechanism into well-known high-performing 
trading strategies such as AA, GDX, or ZIP.  

7. SUMMARY AND CONCLUSIONS

To the best of our knowledge, this is the first published 
account of a functional simulation of the LSE Turquoise 
coupled lit/dark pools and associated reputation-based 
order management system. For us to demonstrate the 
utility of BSELD, it was necessary to create a new type 
of automated trading agent, one that is sensitive to 
imbalances in the quantities on the limit order book and 
which in consequence exhibits market impact behaviors 
in its pricing: we have done that with ISHV, presented 
here for the first time, and as far as we are aware ISHV 
is the only public-domain automated trader that can be 
used in this way, to explore market impact issues. Thus 
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the two primary contributions of this paper are the first-
ever demonstration of size-related impact effects in 
markets populated by automated traders, via our 
introduction of the ISHV strategy; and the reduction (to 
the point of elimination) of those impact effects via the 
introduction of mechanisms in BSELD that are closely 
modelled on the LSE Turquoise trading platform.  
By adding the code for our BSELD simulator, and the 
ISHV trader, to the public-domain BSE repository on 
GitHub we are providing a tool that can be widely used 
as the platform for a large range of further research in 
experimental economics, market microstructure, 
automated trading, and computational finance. Providing 
BSELD as a freely-available shared common platform 
for such research is intended to facilitate replication and 
extension of results, and to ease the work of researchers 
wanting to study the behavior of automated trading 
systems in truly contemporary market environments.  
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