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ABSTRACT
The area under the receiver operating characteristics
curve (AUC) can be used to assess the discriminatory
power of a dichotomous classifier model. Extending this
measure to more than two classes is not obvious, and a
number of variants have been proposed in the literature.
We investigate a heuristic approximation to a method that
generalizes the notion of probabilities being correctly or-
dered, which is equivalent to AUC, to an arbitrary num-
ber of classes. While the exact method is computationally
complex, we propose a much simpler heuristic that is lin-
ear in the number of classes for every combination of data
points. Using one artificial and one real-world data set,
we demonstrate empirically that this simple heuristic can
provide good approximations to the exact method, with
Pearson correlation coefficients between 0.85 and 0.998
across all data sets.

Keywords: multiclass AUC, multiclass ROC, classifier
performance assessment

1. INTRODUCTION
Receiver operating characteristics (ROC) curves have a
long and storied history as tools for evaluating classi-
fication performance of predictive models, in particular
in the application domain of biomedicine (Metz 1978;
Lusted 1978; Lasko et al. 2005). At around the new mil-
lenium, machine learning researchers also discovered the
usefulness of ROC curves for the analysis of their models
(Flach 2003; Fürnkranz and Flach 2005; Fawcett 2006;
Davis and Goadrich 2006).
ROC curves provide a graphical visualization of false
positive rate (1− specificity) vs. true positive rate (sen-
sitivity) across a spectrum of thresholds for any two-class
discriminatory task based on a linearly ordered measure-
ment. The area under ROC curve (AUC) is therefore
indicative of how well two classes can be distinguished
from one another, regardless of the chosen threshold
(Hanley and McNeil 1982, 1983; Bradley 1997). AUC
can be shown to be equivalent to the c-index P (X < Y )
(Bamber 1975), the probability that two randomly chosen
measurements X and Y from two classes are correctly
arranged on a linear scale. For a classifier that outputs
posterior class membership probabilities, AUC is thus an
alternative to accuracy, which is generally thresholded
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Figure 1: Hypothetical distribution of classifier outputs
for a two-class problem. The left normal distribution rep-
resents outputs for true class 0, and the right normal dis-
tribution represents outputs for true class 1. If these out-
puts are thresholded at 0.5 (smaller values are considered
to belong to class 0, larger values to belong to class 1), all
the cases of true class 0 are misclassified. Nevertheless,
the classifier achieves almost perfect discrimination be-
tween the two classes, with a corresponding AUC value
of close to 1.

at 0.5. A classifier that is not well calibrated (possibly
owing to changes in class distributions between training
and test set) may therefore achieve an accuracy of only
50%, although its AUC may be close to 100%. This situ-
ation is shown graphically in Figure 1.
Deep learning problem settings, architectures and train-
ing techniques have brought a renewed interest in extend-
ing the use of AUC as a discriminatory measure to the
multiclass case. There has been some work on construct-
ing and interpreting ROC curves in multiclass settings
(Edwards et al. 2004, 2005; He et al. 2006; He and Frey
2006). Previous work on extending the discriminatory
measure AUC to N classes has focused either on com-
bining multiple AUCs from one-vs-all classifiers (Hand
and Till 2001; Landgrebe and Duin 2007), or on directly
generalizing the equivalence of AUC to c-index and the
underlying notion of what it means for class-membership
probabilities to be “correctly ordered”. Here, we will pur-
sue this second direction of reasoning.
The obvious starting point is to consider three classes.
Mossman (1999) advocated a geometric argument to
generalize the notion of a changing threshold; a more
involved derivation of a similar argument is given by
He and Frey (2008). Dreiseitl et al. (2000) argued
for a broader interpretation of the notion of “correctly
ordered” to the three-class case. This latter idea,
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Figure 2: Three probability estimate triplets 4 (for an
element of class 0), 5 (for an element of class 1) and �
(for an element of class 2) on the triangle {(x, y, z) ∈
R3 |x + y + z = 1}. The three triplets are considered
correctly ordered if the sum of distances between triplets
and true-class corners is smaller than the sum of distances
between triplets and all permutations of corners.

which will form the basis for the following argument,
rests on viewing a traditional two-class pair of prob-
abilities p0 = P (class is 1 | case is class 0) and p1 =
P (class is 1 | case is class 1) as correctly ordered if p0 <
p1. For the three-class case, a classifier output is a
probability triplet (p0, p1, p2), with the pi being poste-
rior class-membership probabilities for each of the three
classes. One possible way of considering three probabil-
ity triplets p0 = (p00, p01, p02), p1 = (p10, p11, p12) and
p2 = (p20, p21, p22) to be correctly ordered is if the sum
of distances of the pi to their true-class corners of the con-
vex set {(x, y, z) ∈ R3 |x + y + z = 1} is smaller than
all other possible distances of triplets to corners. This
idea is expressed graphically in Figure 2. Note that this
notion of “correctly ordered” depends only on the posi-
tioning of the three symbols relative to one another, and
not on where on the triangle the three symbols are placed,
as long as their relative positioning is the same. It is thus
possible to transfer the property of AUCs of being invari-
ant to monotonic transformations to the three-class case.
In the three-class case, the equivalent to AUC is the vol-
ume under the surface, which is calculated as the frac-
tion of all triplet combinations, one each from the three
classes c0, c1 and c2, that are correctly ordered in the
sense above:

VUS(c0, c1, c2) :=
1

|c0| |c1| |c2|
∑
p0∈c0

∑
p1∈c1

∑
p2∈c2

co(p0, p1, p2) ,

where co is a Boolean indicator function that returns 1 iff
its arguments are correctly ordered.
Due to the combinatorial nature of the problem, an exact
VUS calculation is possible only for small cardinalities
of the data sets involved. Approximations, however, are
feasible, as sampling theory ensures that the error of an

approximation will decrease with the square root of the
data set cardinalities.
The derivations above are sufficiently general to be ap-
plicable in the N > 3-class case. We will use the term
probability vector to denote the generalization of class
membership probability triplets to an arbitrary number
of classes. Extending the VUS calculations from three
classes to the generalN -class case, however, is hampered
not only by the exponential growth of having to compare
all n1n2 · · ·nN possible combinations of N -class prob-
ability vectors (with the ni denoting the cardinalities of
the data sets from class i), but by the O(N !) complexity
of computing all possible distances of probability vectors
to corners for every combination of probability vectors.
This latter calculation cannot be approximated by sam-
pling, because all of the N ! − 1 other sums of distances
have to be smaller than the sums of distances to the “true”
corners for a combination of probability vectors to be cor-
rectly ordered.
This paper thus addresses the question of how to effi-
ciently substitute for the factorial problem of computing
all sums of distances between probability vectors and cor-
ners. The approach considered here is based on comput-
ing angles to the true-class corners of the estimate space,
and only grows as O(N) instead of O(N !). Details of
this approach are given in Section 2; experimental results
in Section 3 demonstrate its feasibility.

2. METHODS
The approach presented here was inspired by the notion
of varying thresholds in ROC curve construction first pre-
sented by Mossman (1999), although no explicit thresh-
olds are required for AUC and VUS computations. As
a heuristic approximation to N -dimensional probability
vectors being correctly ordered (which would require N !
distance computations for an N -class problem), we com-
pute only N angles between the lines formed by the cen-
ters of mass ofN probability vectors, the individual prob-
ability vectors, and their corresponding “true” corners. A
graphical representation of this idea is shown in Figure 3.
As a visual aid, the figure also shows the grey lines ob-
tained by orthogonal projections of the center of mass
onto the triangle sides. These lines illustrate that for three
classes, an arrangement of points can be considered to
be correctly ordered if every point is in its own (correct)
portion of the triangle; this translates to a restriction of
| cosα| ≤ 1

2 for the angle α between center of mass,
point and corresponding corner. One can show that for
the general situation with N classes, this restriction is
| cosα| ≤ 1

N−1 , thus approaching an angle of α = 90◦

in the limit N →∞.
Preliminary experiments, however, revealed this limit to
be too restrictive, as some situations that were correctly
ordered in the computationally expensive distances-to-
corners sense were not identified as such in the angles
sense introduced here. The limit was therefore set to a
constant α ≤ 90◦, which gave reasonable results that
were computationally cheap approximations to the much
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Figure 3: Three probability estimate triplets 4 (for an
element of class 0), 5 (for an element of class 1) and �
(for an element of class 2) on the triangle {(x, y, z) ∈
R3 |x+ y+ z = 1}. For clarity, only one line connecting
the center of mass of these three triplets to one of the
triplets and its corresponding corner are shown. The grey
lines connect the center of mass to the triangle sides at
right angles.

more expensive distances-to-corners calculations.

3. EXPERIMENTS
We investigated the effect of substituting a heuristic ap-
proximation for an exact computation using two data sets,
one artificial, and one from the wide range of publically
available machine learning data sets.

3.1. Artificial data set
For the artificial data set, we used random variates from
multivariate Gaussians, one for each class, with spherical
covariance matrices C = σI , with I the identity matrix.
To obtain probability vectors, we passed these random
variates through the softmax function. Changing the dis-
tances between the distribution means relative to the σ
values allows to increase or decrease VUS values as de-
sired.
As there are two sources of computational complexity in
N -class VUS calculation, we initially isolated only the
first source, i.e., sampling from the data sets, while keep-
ing the more complex distances-to-corners definition of
“correctly ordered”. For a three-class VUS value in the
intermediate range of around 0.85, Figure 4 shows how
increasing the data set size leads to more and more accu-
rate estimates of the VUS value. The distribution of data
points in this artificial data set is shown in Figure 5.
Because the proposed approach of substituting the angles
calculation introduced in Section 2 for the distances-to-
corners definition is only a heuristic approximation, it is
of primary interest to evaluate how much results obtained
using these two approaches match. For the three-class
case, we placed the means of three Gaussians at equal
distances from one another, and varied the values of σ to
create more or less overlap between the classes. A scat-
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Figure 4: VUS values as function of data set size, for
sizes from 1 to 100, on the artificial three-dimensional
set of probability vectors shown in Figure 5.

Figure 5: The distribution of the three-dimensional prob-
ability vectors used for generating the VUS values shown
in Figure 4. For clarity of presentation, only 20 points
from each data set are shown. The “true corners” of each
class are marked with the corresponding symbol.

terplot of the VUS values obtained from exact and ap-
proximate approaches is shown in Figure 6. One can ob-
serve that the heuristic calculation using angles provides
a good approximation to the exact, but more computa-
tionally complex distances-to-angles VUS values. The
Pearson correlation coefficient between both sets of val-
ues is 0.998.
Moving from three to four classes, we observed the
same agreement between exact calculation and heuris-
tic approximation (Pearson correlation coefficient again
at 0.995), leading us to believe that the agreement might
extend to N > 4, for which the exact calculation is all
but infeasible. The probability vectors were generated as
described above; the result of a scatterplot between the
two sets of results is given in Figure 6.

3.2. CIFAR-10 data set
The CIFAR-10 data set (Krizhevsky 2009) is one of the
most widely-used data sets in machine learning. It con-
sists of 50 000 training and 10 000 test color images at a
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Figure 6: Scatterplot of the 50 VUS values obtained by
the traditional distances-to-corner method (on the x-axis)
vs. the proposed angles heuristic (on the y-axis), for
N = 3 classes on the artificial data set. All values were
obtained with 50 probability vectors in each of the three
classes.
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Figure 7: Scatterplot of the 50 VUS values obtained by
the traditional distances-to-corner method (on the x-axis)
vs. the proposed angles heuristic (on the y-axis), for
N = 4 classes on the artificial data set. All values were
obtained with 50 probability vectors in each of the four
classes.

resolution of 32 × 32 pixels from ten different classes,
ranging from airplanes and automobiles to cats and dogs.
We used a Tensorflow implementation of a deep neural
network with four convolutional and two fully connected
layers to train a classifier for distinguishing between all
ten classes. To obtain results across a more generally rep-
resentative range of VUS values (and not just close to 1),
we trained the neural network model for only one itera-
tion through all 50 000 training instances. Already in this
one iteration, we achieved an accuracy value of 61.65%
on the test set.
For the experiments reported here, we picked arbitrary
three or four classes and renormalized the corresponding
vector components to turn them into probability vectors.
This choice of classes was repeated 10 times; for each
such data set, we sampled 5 instances of 50 probability
vectors in each class. The scatterplot comparing the an-
gles heuristics with the distances-to-corners method for
three classes is shown in Figure 8. One can observe
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Figure 8: Scatterplot of the 50 VUS values obtained by
the traditional distances-to-corner method (on the x-axis)
vs. the proposed angles heuristic (on the y-axis), forN =
3 classes on the CIFAR-10 set. All values were obtained
with 50 probability vectors in each of the three classes.
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Figure 9: Scatterplot of the 50 VUS values obtained by
the traditional distances-to-corner method (on the x-axis)
vs. the proposed angles heuristic (on the y-axis), forN =
4 classes on the CIFAR-10 set. All values were obtained
with 15 probability vectors in each of the four classes.

that the VUS values are rather high, with most in the
range of 0.9 to 1. The Pearson correlation coefficient
between both the angles heuristic and the distances-to-
corners method was 0.968. The corresponding plot for
four classes is shown in Figure 9, with a similar appear-
ance, but a more narrow range of VUS values, and more
dispersion of points and a correspondingly lower Pearson
correlation coefficient of 0.797. We speculate, however,
that this lower value may be due to the more narrow range
of VUS values.

4. CONCLUSION
The area under the ROC curve, and its multiclass variant,
the volume under the ROC surface, provide alternatives
to accuracy as a measure of classifier performance. We
demonstrated empirically that a simple O(N) heuristic
approximation to a prohibitively computationally expen-
sive O(N !) calculation for N classes is able to achieve
similar results.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

330



REFERENCES
Bamber D., 1975. The area above the ordinal dominance

graph and the area below the receiver operating char-
acteristic graph. Journal of Mathematical Psychology,
12:387–415.

Bradley A., 1997. The use of the area under the ROC
curve in the evaluation of machine learning algorithms.
Pattern Recognition, 30:1145–1159.

Davis J. and Goadrich M., 2006. The relationship be-
tween Precision-Recall and roc curves. In Proceed-
ings of the 23rd International Conference on Machine
Learning (ICML-2006), pages 233–240.

Dreiseitl S., Ohno-Machado L., and Binder M., 2000.
Comparing three-class diagnostic tests by three-way
ROC analysis. Medical Decision Making, 20:323–331.

Edwards D., Metz C., and Kupinski M., 2004. Ideal
observers and optimal ROC hypersurfaces in N-class
classification. IEEE Transactions on Medical Imaging,
23:891–895.

Edwards D., Metz C., and Naishikawa R., 2005. The
hypervolume under the ROC hypersurface of “near-
guessing” and “near-perfect” observers in N-class clas-
sification tasks. IEEE Transactions on Medical Imag-
ing, 24:293–299.

Fawcett T., 2006. An introduction to ROC analysis. Pat-
tern Recognition Letters, 27(8):861–874.

Flach P., 2003. The geometry of ROC space: Understand-
ing machine learning metrics through ROC isometrics.
In Proceedings of the 20th International Conference
on Machine Learning (ICML-2003), pages 226–233.

Fürnkranz J. and Flach P., 2005. ROC ’n’ rule learning—
towards a better understanding of covering algorithms.
Machine Learning, 58:39–77.

Hand D. and Till R., 2001. A simple generalisation of the
area under the ROC curve for multiple class classifica-
tion problems. Machine Learning, 45:171–186.

Hanley J. and McNeil B., 1982. The meaning and use
of the area under the receiver operating characteristic
(ROC) curve. Radiology, 143:29–36.

Hanley J. and McNeil B., 1983. A method of comparing
the areas under receiver operating characteristic curves
derived from the same cases. Radiology, 148:839–843.

He X. and Frey E., 2006. Three-class ROC analysis—
the equal error utility assumption and the optimality of
three-class roc surface using the ideal observer. IEEE
Transactions on Medical Imaging, 25:979–986.

He X. and Frey E., 2008. The meaning and use of the
volume under a three-class ROC surface (VUS). IEEE
Transactions on Medical Imaging, 28:577–588.

He X., Metz C., Tsui B., Links J., and Frey E., 2006.
Three-class ROC analysis—a decision theoretic ap-
proach under the ideal observer framework. IEEE
Transactions on Medical Imaging, 25:571–581.

Krizhevsky A., 2009. Learning multiple layers of features
from tiny images. Technical report, Computer Science
Department, University of Toronto.

Landgrebe T. and Duin R., 2007. Approximating the mul-
ticlass roc by pairwise analysis. Pattern Recognition
Letters, 28:1747–1758.

Lasko T., Bhagwat J., Zhou K., and Ohno-Machado L.,
2005. The use of receiver operating characteristic
curves in biomedical informatics. Journal of Biomedi-
cal Informatics, 38(5):404–415.

Lusted L., 1978. General problems in medical decision
making with comments on ROC analysis. Seminars in
Nuclear Medicine, 8:299–306.

Metz C., 1978. Basic principles of ROC analysis. Semi-
nars in Nuclear Medicine, 8:283–298.

Mossman D., 1999. Three-way ROCs. Medical Decision
Making, 19:78–89.

AUTHOR BIOGRAPHIES
STEPHAN DREISEITL received his
MSc and PhD degrees from the Uni-
versity of Linz, Austria, in 1993 and
1997, respectively. He worked as a vis-
iting researcher at the Decision Systems
Group/Harvard Medical School before
accepting a post as professor at the Up-
per Austria University of Applied Sci-

ences in Hagenberg, Austria, in 2000. His research in-
terests lie in the development of machine learning mod-
els and their application as decision support tools in
biomedicine.

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

331


