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ABSTRACT 
The paper deals with testing and evaluation of a 

modified Self-Organizing Migrating Algorithm (SOMA) 
applied to a discrete event simulation model reflecting 
the supply of production lines using automated guided 
vehicles. The SOMA heuristic optimization method is 
derived from the Differential Evolution method. We test 
all the SOMA strategies under the same conditions of the 
simulation experiments – the same termination criteria, 
number of repetitions in the optimization experiments, 
and the same setting of the basic parameters of the 
SOMA. We propose a methodology using different 
evaluation criteria to analyse the different SOMA 
strategies behaviour of finding the optimum of an 
objective function specified for each discrete event 
simulation model. 
Keywords: SOMA, Self-Organizing Migrating 
Algorithm, Discrete Event Simulation Model, AGV, 
Evaluation 

1. INTRODUCTION
Many of today’s industrial companies are large complex 
systems affected by a host of internal and external 
factors. An important thing is effective management of 
company resources and processes. We can use a digital 
replica of a physical system – a digital twin. This 
simulation model can answer the question “What 
happens if …”. The simulation of different scenarios can 
avoid bad human decision-making and also prevent 
system errors in the company before they occur e.g. 
timely identification of bottlenecks, mapping and 
increasing the utilization of company resources, effective 
scheduling and resource allocation, bin packing 
problems (Koblasa, Vavrousek, and Manlig 2017), 
transport distances (Bučková, Krajčovič, and Edl 2017), 
etc. Another problem is we cannot often calculate and 
evaluate each possible scenario because of the large 
number of possible solutions in the search space – NP 
hard problem. The search space is usually 
boundary-constrained and it represents the domain of the 
input parameters of the discrete event simulation model. 
The search space is defined as follows: 

𝑋̃ = ∏ 𝑋̃𝑗
𝑛
𝑗=1 = ∏ [𝑎𝑗 , 𝑏𝑗]

𝑛
𝑗=1 , 𝑎𝑗 ≤ 𝑏𝑗 , 𝑎𝑗 , 𝑏𝑗 ∈ ℝ (1) 

Where symbols denote: 𝑋̃ denotes the search space; 𝑗 
denotes the 𝑗-th decision variable of the simulation 
model; 𝑛 denotes the dimension of the search space; 𝑎𝑗 
denotes the lower bound of the interval of 𝑗-th decision 
variable; 𝑏𝑗 denotes the upper bound of the interval of 
𝑗-th decision variable. 

The goal of using the simulation optimization is to find 
the best quality solution (represented by the objective 
function value) according to the other possible solutions. 

We proposed the simulation optimizer with different 
(heuristic, metaheuristic, etc.) optimization methods that 
vary the discrete event simulation model input 
parameters to find the optimal solution of the modelled 
problem. The possible solution containing the settings of 
each simulation model input parameter is defined as 
follows: 

𝐗[𝑗] = 𝑥𝑗∀𝑗: 𝑗 = {1,2, … , 𝑛} (2) 

where 𝐗[𝑗] denotes a possible solution – the vector of the 
values for each decision variable; 𝑥𝑗 denotes the value of 
the j-th decision variable; j denotes the index of the 
decision variable. 
If we minimize the objective function values, the global 
optimum is defined as follows: 

𝐗̌ = argmin𝐗∈𝑋̃ 𝐹(𝐗) = {𝐗̌ ∈ 𝑋̃: 𝐹(𝐗̌) ≤ 𝐹(𝐗)∀𝐗 ∈ 𝑋̃}  (3) 

where 𝐗̌ denotes the global minimum of the objective 
function; 𝐹(𝐗) denotes the objective function value of 
the candidate solution – the range includes real numbers, 
i.e.  𝐹(𝐗) ⊆ ℝ; 𝑋̃ denotes the search space.  
The function maximization can be converted to function 
minimization by multiplying the objective function value 
by -1.  

The simulation optimizer provides a candidate solution 
(best found feasible solution of the modelled problem) or 
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a list of candidate solutions. The problem is that we 
cannot confirm that the candidate solution provided by 
the optimization method is the real optimum of the 
objective function because we cannot evaluate all 
possible solutions in the search space - NP hard problem. 
Another problem is that the optimization method is prone 
to bad settings of its parameters. Hence, we proposed a 
methodology using different evaluation criteria to 
analyse the SOMA behaviour of finding the optimum of 
an objective function. 

2. SELF-ORGANIZING MIGRATING
ALGORITHM - SOMA

SOMA is based on the self-organizing behaviour of 
groups of individuals in a ‘social environment’. It can 
also be classified as an evolutionary algorithm, even 
though no new generations of individuals are created 
during the search. Only the positions of the individuals 
in the search space are changed during a generation, 
called a ‘migration loop’. Individuals are generated at 
random according to what is called the ‘specimen of the 
individual’ principle. The specimen is in a vector, which 
comprises an exact definition of all these parameters that 
together lead to the creation of such individuals, 
including the appropriate constraints of the given 
parameters. SOMA is not based on the philosophy of 
evolution (two parents create one new individual – the 
offspring), but on the behaviour of a social group of 
individuals. (Zelinka 2016) 
The SOMA optimization method is derived from 
Differential Evolution. There are different modifications 
of the Differential Evolution e.g. (Elsayed, Sarker, and 
Essam 2013; Li et al. 2015) 
The original source code in different programming 
languages of the tested SOMA can be downloaded at 
(Zelinka 2005). 

2.1. The SOMA parameters 
The Mass parameter denotes how far the currently 
selected individual stops from the leader individual (if 
𝑀𝑎𝑠𝑠 = 1 then the currently selected individual stops at 
the position of the leader, if  𝑀𝑎𝑠𝑠 = 2 then the currently 
selected individual stops behind the position of the 
leader, which equals the distance of the initial position of 
the currently selected individual and the position of the 
leader). If 𝑀𝑎𝑠𝑠 < 1 then the currently selected 
individual stops in front of the leader which leads to 
degradation of the migration process (the algorithm finds 
only local extremes). Hence it is recommended to use 
𝑀𝑎𝑠𝑠 > 1. It is also recommended to use the following 
lower and upper boundary of the parameter 𝑀𝑎𝑠𝑠 ∈
[1.1,3].  
The Step parameter denotes the resolution of mapping the 
path of the currently selected individual. It is possible to 
use a larger value for this parameter to accelerate the 
searching of the algorithm if the objective function is 
unimodal (convex function, few local extremes, etc.). If 
the objective function landscape is not known, it is 

recommended to use a low value for this parameter. The 
search space will be scanned in more detail and this 
increases the probability of finding the global extreme. It 
is also important to set the Step parameter in a way that 
the distance of the currently selected individual and the 
leader is not an integer multiple of this parameter (the 
diversity of the population is reduced because each 
individual could be pulled to the leader and the process 
of searching for the optimum could stop at a local 
extreme). Hence it is recommended to use 𝑆𝑡𝑒𝑝 = 0.11 
instead of 𝑆𝑡𝑒𝑝 = 0.1. The setting of e.g. 𝑆𝑡𝑒𝑝 = 0.11 
also rapidly increases the effectiveness of SOMA 
Strategy All To All.  
The PRT parameter denotes the perturbation. The 
Perturbation vector contains the information whether the 
movement of the currently selected individual toward the 
leader should be performed. It is one of the most 
important parameters of this optimization method and it 
is very sensitive. It is recommended to use 𝑃𝑅𝑇 = 0.1. If 
the value of this parameter increases, then the 
convergence of the SOMA algorithm to local extremes 
also rapidly increases. It is possible to set this parameter 
to 𝑃𝑅𝑇 ∈ [0.7,1.0] if many individuals are generated and 
if in the dimension of the search space the objective 
function is low. If 𝑃𝑅𝑇 = 1 then the stochastic part of 
the behaviour of SOMA is cancelled and the algorithm 
behaves according to deterministic rules (local 
optimization of the multimodal objective function). 
The NP parameter denotes how many individuals are 
generated in a population. If this parameter is set to 𝑁𝑃 =
2 the SOMA algorithm behaves like a traditional 
deterministic method.  
Generally if n (where n denotes the dimension of the 
search space) is a higher number, then this parameter can 
be set to 𝑁𝑃 = [0.2,0.5] × 𝑛. If the objective function 
landscape is simple we can use a lower number of 
generated individuals. If the objective function is 
complicated we can set this parameter 𝑁𝑃 = 𝑛. It is 
recommended to use 𝑁𝑃 ≥ 10. 
This parameter is equivalent to the ‘Generation’ 
parameter used in other evolutionary algorithms. This 
parameter denotes the number of population 
regenerations. (Volna 2012; Zelinka 2016; Zelinka et al. 
2013;  

2.2. Strategy of Individual Movements 
There are several variants of the basic SOMA 
optimization method – strategies of individual 
movements. The principle is to distinguish the 
cooperation of the individuals and the migration of the 
population in the search space. The strategies are: 
AllToOne – all the individuals in the population migrate 
to the leader, except the leader. The leader remains at its 
position during a migration loop - strategy index: 0; 
AllToAll – in this strategy, there is no leader. All 
individuals move towards the other individuals. The 
individual comes back to the best found solution after 
finishing the NP-1 individual migrations. This strategy is 
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more time consuming, but the probability of finding the 
global extreme is higher, because the individuals can 
explore a bigger area of the search space - strategy index: 
1; AllToAllAdaptive – this strategy is similar to 
AllToAll strategy. The difference between the AlltoAll 
strategy is that individuals do not begin a new migration 
form the same old position, but from the last best position 
found during the last migration to the previous individual 
- strategy index: 2; AllToRand – this is a strategy where 
all individuals move towards a randomly selected 
individual during the migration loop, no matter what cost 
value this individual has. It is up to the user to decide 
how many randomly selected individuals there should be 
- strategy index: 3. (Zelinka 2016) 

3. AGV TRANSPORT MODEL
This practical discrete event simulation model deals with 
supplying the production lines using automated guided 
vehicles (AGVs). Large parts are supplied by the trailers 
and it is not possible to load a big number of these parts 
to satisfy the needs of the production line for a longer 
time. Hence more trailers must be used for the transport 
at once. It is also not possible to control the supply in a 
way that if the supply falls below a certain level there 
would be generated a requirement for transport from the 
warehouse (except for a limited number of some parts). 
This is caused by the transport time which is longer than 
the time of consumption of the parts transported to the 
production line. 
The whole system of supplying the production lines is 
based on a simple principle: a tractor with trailers 
continually transports the parts and after the unloading of 
the transported parts it goes to the warehouse or to pre-
production for new parts and then transports them 
immediately to the production lines – see Figure 1. 

Limited capacity of the buffer (parts storage) on the 
production line is a regulation in this case. Each tractor 
has a defined path using different loading and unloading 
stations which must be passed. The various types of parts 
are loaded and unloaded at different stations in the 
company. The parts can be loaded on the trailer at the 
loading stations in the warehouse or at the various 
production departments in the company. Each production 
line has several unloading stations for various parts. A 
schematic layout of the loading and unloading stations is 
shown in Figure 2. The decision variables are the number 
of each AGV type. The following illustrates a situation 
where a collapse of the whole transport system occurred 
(because of the blockage of one AGV by another AGV) 
– see Figure 2.

Figure 1:  Simple Layout of Loading/Unloading Stations 
for AGV 

Figure 2: Sample of AGV Collapse in the Simulation 
Model  

The objective function reflects the average use of AGV 
(tractor with trailers). The objective function also reflects 
the overall average utilization of the production lines. 
The average use of the production lines is superior to 
average use of the trains using the coefficients in the 
objective function. The objective function is maximized. 
(Raska and Ulrych 2014) 
The objective functions definitions: 

𝐹1(𝐗) =∑𝑈𝑖

𝑛

𝑖=1

(𝐗)
(4) 

where 𝑈𝑖 denotes the utilization of the i-th production 
line; n denotes the number of production lines. 

𝐹2(𝐗) =
∑ (10 −  𝑁𝑖(𝐗))
𝑚
𝑖=1

1000

(5) 

where 𝑁𝑖 denotes the number of AGV of the same type; 
m denotes the number of AGV of different types.  

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

334



𝐹(𝐗) = 𝐹1(𝐗)+ 𝐹2(𝐗) (6) 

where 𝐹(𝐗) denotes the resulting objective function. 

4. OPTIMIZATION EXPERIMENTS

We have to repeat the simulation optimization 
experiments. This replication ensures the reduction of the 
influence of random implemented in the optimization 
algorithm. We divide the number of the simulation 
experiments as follows:  

• Simulation experiment – simulation run of the
simulation model

• Optimization experiment – performed with a
specific optimization method setting to find the
optimum of the objective function

• Series – replication of optimization experiments
with a specific optimization method setting

We tested 2,304 different settings of the SOMA 
optimization method. Table 1 shows the defined step and 
lower and upper boundaries for the SOMA parameters.  

Table 1: Settings of SOMA Parameters 
Parameter Step Lower 

Bound 
Upper 
Bound 

Mass 0.5 1.1 2.6 
Step 0.4 0.11 1.31 
PRT 0.1 0.1 0.6 
NP 1×n 1×n 6×n 
Migrations 10 10 10 
Strategy index (strategy 
type) 

1 0 3 

We designed our own simulation optimizer based on 
Client - Server architecture. This architecture allows us 
to reduce the time of the optimization experiment 
because the series - replication of optimization 
experiments with a specific optimization method setting 
- can be performed on many remote simulation 
optimizers - servers.  
We tested all the items - possible solutions - of the 
discrete event simulation model search space. We 
selected only feasible solutions. These feasible solutions 
represent the feasible settings of the simulation model 
input parameters under specified constraints. We created 
a database containing these solutions and their objective 
function values. Each feasible solution and its objective 
function value is encoded into one number to accelerate 
the searching of the database. A remote simulation 
optimizer on the servers downloads this database from 
the client to local computer memory before performing 
the simulation runs. The simulation optimizer does not 
have to perform the simulation run in simulation 
software, but it only searches for the possible solution in 
the internal memory. If the local memory on the server 
does not contain the possible solution, the optimizer asks 
for this solution from the client’s external database. All 
the servers are connected to this remote database and if 

the local memory of the simulation optimizer does not 
contain this new generated possible solution by the 
optimizer, the simulation optimizer performs the 
simulation experiment with the settings of the simulation 
model input parameters and calculates its objective 
function value. Then it saves the possible solution and its 
objective function value in its own local server and in the 
external database of the client. This user option increases 
the speed of the simulation optimization experiment. 

4.1. Termination Criteria 
The same termination criteria were satisfied for each 
tested series. We specified the first termination criterion 
– Value to Reach - because we mapped all the solution
candidates in the search space. The found value of Value 
to Reach is the global optimum/maximum of the 
objective function (the objective function maximization): 

𝑿̂ = argmax𝐗∈𝑋̃ 𝐹(𝐗) = {𝑿̂ ∈ 𝑋̃: 𝐹(𝑿̂) ≥ 𝐹(𝐗)∀𝐗 ∈ 𝑋̃} 
(7) 

where 𝑿̂ denotes the global maximum of the objective 
function; 𝐹(𝑿̂) denotes the objective function value of the 
global maximum; 𝐹(𝐗) denotes the objective function 
value of the possible solution – the range includes real 
numbers, i.e.  𝐹(𝐗) ⊆ ℝ; 𝑋̃ denotes the search space.  

Because we know the global optimum of the objective 
function we could specify the tolerated deviation (𝜀 =
0.001 in our case) from the objective function value of 
the global optimum. The optimization methods also stop 
searching for the global optimum if they find a possible 
solution whose objective function value is within the 
defined tolerance. 

|𝐹(𝐗) − 𝐹(𝑿̂)| ≤ 𝜀 (8) 

where 𝐹(𝐗) denotes the objective function of the found 
possible solution in the optimization experiment with 
concrete settings of the optimization method parameters; 
𝐹(𝑿̂) denotes the objective function value of the global 
maximum. 
The second termination criterion is the maximum 
number of simulation runs that the simulation optimizer 
can perform in the optimization. We performed many 
optimization experiments in the initial stage of testing.  
We confirmed that the settings of the optimization 
method could significantly affect the performance of the 
optimization method. Hence we tested many different 
settings of the optimization methods to reduce the 
number of bad settings of the optimization methods 
parameters. Another reason for repeating the 
optimization experiments is reduction of the random 
nature of the optimization method (SOMA uses random 
distribution).  
We calculated this maximum number using information 
entropy - Shannon Entropy. The number of all possible 
solutions in the search space is reduced using 
information entropy. (Borda 2011)   
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The reduction coefficient: 

𝛿 = max {0,1 − β ∙ 𝑙𝑜𝑔𝑋̃}, 𝛿 ∈ [0,1] (9) 

Where 𝑋̃ denotes the size of the search space – the 
number of all possible solutions in the search space; β 
denotes the coefficient of search space reduction. 

𝑋̃𝐻 denotes the maximum number of simulation runs that 
the optimization method can perform in each 
optimization experiment. It is defined as follows: 

𝑋̃𝐻 = ⌊2𝛿∙𝑙𝑜𝑔2𝑋̃⌋ (10) 

The following table shows the specifications of the tested 
discrete event simulation model – the global minimum, 
the global maximum, the dimensions of the search space, 
the number of possible solutions in the search space, the 
maximum number of simulation runs that the simulation 
optimizer can perform in the optimization using 
information entropy. We set the coefficient  β = 0.05 
according to our initial optimization experiments – see 
Table 2.  

Table 2: Specifications of the Discrete Event Simulation 
Model 

Discrete 
Event 
Simulation 
Model 

𝐹(𝐗̌) 𝐹(𝐗̂) 𝑛 𝑋̃ 𝑋̃𝐻

AGV 
Transport 
Model 

0.1368983 9,1 15 14,515,200 39,558  

5. EVALUATION CRITERIA

Many research papers use the average or the standard 
deviation to evaluate the performance of the optimization 
methods. This evaluation criterion is sufficient for 
commonly used testing functions, e.g. De Jong’s, 
Rosenbrock’s, Ackley’s function, etc. (Pohlheim 2006) 
We proposed different evaluation criteria which express 
the success or the failure of the optimization method in 
different ways. Each criterion value is between [0, 1]: 

𝑓𝑖 ∈ [0,1]∀𝑖: 𝑖 = {1,2, … ,5} (11) 

If the failure is 100[%], the criterion equals 1, therefore 
we try to minimize all specified evaluation criteria. The 
second and the third criteria are calculated from the Box 
plot characteristics - the smallest observation – sample 
minimum Q1, lower quartile Q2, median Q3, upper 
quartile Q4, and largest observation - sample maximum 
Q5. These characteristics are calculated for each 
performed series – the setting of the optimization method 
parameters.  

We calculated the quality of each series which comprises 
all the proposed evaluation criteria. We calculated the 
quartile characteristics – the minimum, the first quartile, 
the median, the third quartile and the maximum of the 
whole range of values representing the quality – the 
weighted sum for all other proposed criteria. The 
following boxplot charts show the main criteria 
calculated for each series sorted according to the 
calculated weighted sum of all the proposed criteria: 

𝑓 = 𝑓1 ∙ 𝑤𝑓1 + 𝑓2 ∙ 𝑤𝑓2 + 𝑓3 ∙ 𝑤𝑓3 + 𝑓4 ∙ 𝑤𝑓4
+ 𝑓5 ∙ 𝑤𝑓5  

(12) 

where 𝑓 denotes the weighted sum of all criteria; 𝑓1  
denotes the value of the first criterion – The Optimization 
Method Success; 𝑤𝑓1  denotes the weight of the first 
criterion; 𝑓2  denotes the value of the second criterion - 
The Difference Between Optimum and Local Extreme; 
𝑤𝑓2  denotes the weight of the second criterion; 𝑓3  
denotes the value of the third criterion - The Distances of 
Quartiles; 𝑤𝑓3  denotes the weight of the third criterion; 
𝑓4  denotes the value of the third criterion - The Number 
of Simulation Experiments Until the Optimum Was 
Found; 𝑤𝑓4  denotes the weight of the fourth criterion; 𝑓5  
denotes the value of the fifth criterion - Convergence to 
the Optimum (objective function values of the possible 
solutions generated in series by the optimization 
algorithm). 
Table 3 shows the value specified for each weight. The 
sum of the weights equals one. 

Table 3: Specifications of The Weights for Each 
Criterion 

Weight Value 
𝑤𝑓1  0.35 
𝑤𝑓2  0.25 
𝑤𝑓3  0.2 
𝑤𝑓4  0.15 
𝑤𝑓5  0.05 

5.1. Optimization Method Success 
If we know the global minimum and the global maximum 
in the search space we can calculate the range of the 
objective function values: 

𝐹𝑋̃ = |𝐹(𝐗̌) −  𝐹(𝐗̂)| (13) 

where 𝐹(𝐗̌) denotes the objective function value of the 
global minimum in the search space; 𝐹(𝐗̂) denotes the 
objective function value of the global maximum in the 
search space.  
The problem is to define the global minimum or 
maximum where we cannot test all the possible solutions 
in the search space – NP-hard problem. This is a common 
situation in industrial simulation optimization. We can 
only calculate the difference between the objective 
function value of the found best solution candidates in 
the search space in all series (we cannot confirm that the 
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found best solution candidate is the global optimum) - 
and the objective function value of the worst found 
possible solution of the search space (the maximum if the 
objective function is minimized): 
 
∆𝐹𝑋̃ = 𝐹(𝐗∗) − 𝐹(𝑋𝑊𝑜𝑟𝑠𝑡) (14) 

 
where 𝐹(𝐗∗) denotes the objective function value of the 
found best candidate solution of the search space in all 
series; 𝐹(𝑋𝑊𝑜𝑟𝑠𝑡) denotes the objective function value of 
the worst found possible solution (element) of the search 
space. 
The value of the first criterion represents the failure of 
finding the best solution candidates in the search space in 
one series performed by the optimization method – value 
minimization. This criterion is expressed by Pseudo 
Pascal code – see Figure 3: 
 

begin 
 𝑛𝑆𝑢𝑐𝑐 ⟵ 0; 
 (*browse all the items of the list*) 
 for 𝑖 ⟵ 0 to Length(𝑋∗) − 1 do 
  (*optimum or acceptable candidate solution 
was found*) 
  if |𝐹(𝑋∗[𝑖]) − 𝐹(𝐗∗)| ≤ 𝜀 then 
   𝑛𝑆𝑢𝑐𝑐 ⟵ 𝑛𝑆𝑢𝑐𝑐 + 1;   
  (*standardization - % share of unsuccessful 
series*) 

  result ⟵
Length(𝑋∗)−𝑛𝑆𝑢𝑐𝑐

Length(𝑋∗)
;   

end; 

Figure 3:  Pseudo Pascal Algorithm of the First Criterion 
Calculated for One Series – Finding the Global Optimum 
or Suboptimum 
 
where 𝑋∗ denotes the list of found best feasible solutions 
- candidate solutions – for all the optimization 
experiments performed in one series; Length(𝑋∗) 
denotes the length of the list of the candidate solutions - 
number of found global/local optima with the concrete 
settings of the optimization method parameters; 𝐗∗ 
denotes the found best candidate solution (global 
maximum if we mapped all the possible solutions in the 
search space) in all series; 𝜀 denotes the tolerated 
deviation from the value of the objective function value 
of the found best candidate solution in the search space 
in all series; 𝐹( ) denotes the objective function value; 
𝑛𝑆𝑢𝑐𝑐 denotes the counter of successful finding of the 
found best candidate solutions in the search space in all 
series. 
The average method success of finding the best solution 
candidates in the search space from all the series (if we 
know the optimum) can be formulated as follows: 
 

𝑓1𝐴𝑉𝐺  = (1 −
∑ 𝑓1𝑖
𝑠
𝑖=1

𝑠
) ∙ 100[%] 

(15) 

 
where 𝑓1𝐴𝑉𝐺  denotes the average method success of 
finding the optimum of the objective function (criterion 

maximization), i denotes the index of one series; 𝑓1𝑖 
denotes the standardised scalar value of the i-th series 
(the optimization method failure – minimization of the 
criterion), 𝑠 denotes the number of performed series. 
We calculated the average success of all the SOMA 
strategies of finding the optimum of the objective 
function – see Figure 4. 
 

 
Figure 4:  Average SOMA Strategies Success of Finding 
Optimum (Suboptimum)  
 
We calculated the quality of each series which comprises 
all the proposed evaluation criteria using the weighted 
sum as the main criterion. We sorted these series using 
their values of the weighted sum. We calculated the 
minimum, the first quartile, the median, the third quartile 
and the maximum of the whole interval of the weighted 
sums.  
We selected the series that represent the calculated 
boxplot characteristics. The next box plot chart shows the 
success of each SOMA strategy from the worst to the best 
series (concrete settings of the SOMA optimization 
method parameters) – see Figure 5.   
The AllToAllAdaptive strategy (index 2) and AllToRand 
(index 3) is prone to wrong optimization method 
parameters settings in our case of a discrete event 
simulation model. This strategy is followed by the 
SOMA strategy AllToOne strategy (index 0). The worst 
strategy AllToAll (index 1) for setting the wrong 
optimization method parameters. 
 

 
Figure 5:  Found Optima for Different Strategies of 
Individual Movements - Objective Function 
Maximization 
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5.2. The Difference between Optimum and Local 
Extreme 

The second criterion is useful when there is no series 
which contains any optimum or a best solution whose 
objective function value is within the tolerance of the 
optimum objective function value. The first criterion 
equals zero in this case. The output of the function can 
take value 𝑓2 ∈ [0,1]. This function evaluates the 
difference between the objective function value of the 
found best solution in the series and the optimum of the 
objective function value. The task is to minimize this 
evaluation function. The list of found optima considering 
objective function value is sorted in ascending order. 
This sorting can be performed using the comparator 
function, which compares the quality (objective function 
values) of two possible solutions. If we maximize the 
objective function: 

CF𝐹(𝐗)(𝐗1 , 𝐗2) = {
−1    if  𝐹(𝐗1) > 𝐹(𝐗2)

  1    if  𝐹(𝐗1) < 𝐹(𝐗2)

 0    else

 
(16) 

where CF𝐹(𝐗) denotes the comparator function 
comparing the objective function values of two possible 
solutions; 𝐹(𝐗1) denotes the objective function value of 
first possible solution.  
After that the value of the second criterion is calculated 
using the formula: 

𝑓2 = (
𝐹(𝐗∗) − 𝐹(𝑋𝐵𝑒𝑠𝑡)

𝐹𝑋̃
)

(17) 

where 𝐹(𝐗∗) denotes the objective function value of the 
optimum of the search space in all series; 𝐹(𝑋𝐵𝑒𝑠𝑡) 
denotes the objective function value of the best solution 
candidate found in a concrete series; 𝐹𝑋̃ denotes the 
difference between the objective function value of the 
global minimum and the global maximum in the search 
space. 

5.3. The Distances of Quartiles 
The third criterion expresses the distance between the 
quartiles of a concrete series. The output of the function 
can take value 𝑓3 ∈ [0,1]. If the first criterion equals zero 
then the third criterion equals zero – an absolutely 
successful series. The task is to minimize this evaluation 
function. Weights are used for evaluation purposes. 
These weights penalize the solutions placed in quartiles. 
The values of the weights are defined based on the results 
of the simulation experiments. The user can define the 
weight value. The sum of weights equals one. The third 
criterion when the objective function is minimized can 
be formulated as follows: 

𝑓3 =
𝑓3𝑤1 + 𝑓3𝑤2 + 𝑓3𝑤2 + 𝑓3𝑤4 + 𝑓3𝑤5

𝐹𝑋̃

(18) 

𝑓3𝑤5 = |𝑄1 − 𝐹(𝐗
∗)| (19) 

𝑓3𝑤4 = 𝑤4𝑓3
|𝑄1 − 𝑄2| (20) 

𝑓3𝑤3 = 𝑤3𝑓3
|𝑄2 − 𝑄3| (21) 

𝑓3𝑤2 = 𝑤2𝑓3
|𝑄3 − 𝑄4| (22) 

𝑓3𝑤1 = 𝑤1𝑓3
|𝑄4 − 𝑄5| (23) 

Where  𝐹(𝐗∗) denotes the objective function value of the 
global optimum of the search space; 𝑤4𝑓3  denotes the 
weight (penalty) of objective function values between 
sample minimum Q1 and lower quartile Q2; 𝑤3𝑓3  denotes 
the weight of objective function values between lower 
quartile Q2 and median Q3; 𝑤2𝑓3  denotes the weight of 
objective function values between median Q3 and upper 
quartile Q4; 𝑤1𝑓3  denotes the weight of objective function 
values between upper quartile Q4 and largest observation 
- sample maximum Q5. 
If the objective function is maximized the parts of the 
third criterion are calculated as follows: 

𝑓3𝑤5 = |𝐹(𝐗∗) − 𝑄5| (24) 
𝑓3𝑤4 = 𝑤4𝔣3|𝑄4 − 𝑄5| (25) 
𝑓3𝑤3 = 𝑤3𝔣3|𝑄3 − 𝑄4| (26) 
𝑓3𝑤2 = 𝑤2𝔣3|𝑄2 − 𝑄3| (27) 
𝑓3𝑤1 = 𝑤1𝔣3|𝑄1 − 𝑄2| (28) 

Table 4 shows the value specified for each weight for the 
third, fourth and the fifth criterion The sum of the 
weights equals one. 

Table 4: Specifications of Weights for The Third, Fourth 
and The Fifth Criterion 

Weight Value 
𝑤1𝔣𝑖 0.05 
𝑤2𝔣𝑖 0.1 
𝑤3𝔣𝑖 0.25 
𝑤4𝔣𝑖  0.6 

5.4. The Number of Simulation Experiments Until 
the Optimum Was Found 

The fourth criterion evaluates the speed of finding the 
optimum – the number of performed simulation 
experiments until the optimum/best solution was found 
in each series. The output of the function can take the 
value 𝑓4 ∈ [0,1]. The task is to minimize this evaluation 
function. The fourth criterion when the objective 
function is minimized or minimized can be formulated as 
follows: 

𝑓4 =
𝑓4𝑤1 + 𝑓4𝑤2 + 𝑓4𝑤2 + 𝑓4𝑤4 + 𝑓4𝑤5

𝑚𝑋̃

(29) 

𝑓4𝑤5 = |𝑄1 − 1| (30) 
𝑓4𝑤4 = 𝑤4𝑓4

|𝑄1 − 𝑄2| (31) 
𝑓4𝑤3 = 𝑤3𝑓4

|𝑄2 − 𝑄3| (32) 
𝑓4𝑤2 = 𝑤2𝑓4

|𝑄3 − 𝑄4| (33) 
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𝑓4𝑤1 = 𝑤1𝑓4
|𝑄4 − 𝑄5| (34) 

The next box plot shows the number of simulation 
experiments until the optimum (suboptimum) was found. 
The task is to minimize the chart values – see Figure 6. 
High chart values of the strategy AllToAll (index 1) 
show that this strategy has a problem to find the optimum 
of the objective function. The leader of the fastest finding 
of the optimum is AllToOne strategy (index 0). 
The AllToRand (index 3) is a little bit faster than the 
AllToAllAdaptive strategy (index 2). 

Figure 6: Number of Simulation Experiments Until the 
Optimum Was Found – Value Minimization 

The AllToAll strategy (index 1) is not useful when the 
second termination allows a small number of simulation 
experiments to be performed. We tested this strategy 
with a higher number of simulation experiments, which 
SOMA can perform in the series. This strategy was better 
than other strategies of SOMA. 

5.5. Convergence to the Optimum 
The fifth criterion evaluates the convergence to the 
optimum. We store the objective function values of all 
feasible solutions generated by the optimization method 
in the optimization experiments in the series. The output 
of the function can take the value 𝑓5 ∈ [0,1]. The task is to 
minimize this evaluation function. The fifth criterion 
when the objective function is minimized can be 
formulated as follows: 

𝑓5 =
𝑓5𝑤1 + 𝑓5𝑤2 + 𝑓5𝑤2 + 𝑓5𝑤4 + 𝑓5𝑤5

𝐹𝑋̃

(35) 

𝑓5𝑤5 = |𝑄1 − 𝐹(𝐗
∗)| (36) 

𝑓5𝑤4 = 𝑤4𝔣5|𝑄1 − 𝑄2| (37) 
𝑓5𝑤3 = 𝑤3𝔣5|𝑄2 − 𝑄3| (38) 
𝑓5𝑤2 = 𝑤2𝔣5|𝑄3 − 𝑄4| (39) 
𝑓5𝑤1 = 𝑤1𝔣5|𝑄4 − 𝑄5| (40) 

If the objective function is maximized, the parts of the 
fifth criterion are calculated as follows: 

𝑓5𝑤5 = |𝐹(𝐗∗) − 𝑄5| (41) 
𝑓5𝑤4 = 𝑤4𝔣5|𝑄4 − 𝑄5| (42) 
𝑓5𝑤3 = 𝑤3𝔣5|𝑄3 − 𝑄4| (43) 
𝑓5𝑤2 = 𝑤2𝔣5|𝑄2 − 𝑄3| (44) 
𝑓5𝑤1 = 𝑤1𝔣5|𝑄1 − 𝑄2| (45) 

The next box plot shows the boxplot characteristics of the 
intervals of the objective function values of the generated 
feasible solution by the SOMA strategies. The task is to 
maximize the chart values – see Figure 7.   
The leaders of the process of generating quality solutions 
are the AllToAllAdaptive strategy (index 2) and the 
AllToOne strategy (index 0) in our model. The 
AllToRand strategy (index 3) is worse than the previous 
strategies. The low chart values of the strategy AllToAll 
(index 1) show that this strategy has a problem to 
generate quality individuals in a small number of 
simulation experiments. This strategy supports the 
exploration and it needs to perform more simulation 
experiments to find the global optimum. 
In the context of optimization, exploration means finding 
new points in areas of the search space which have not 
been investigated before. Since computers have only 
limited memory, already evaluated solution candidates 
usually have to be discarded in order to accommodate 
new ones. Exploration is a metaphor for the procedure 
which allows search operations to find novel and maybe 
better solution structures.  
Exploitation, on the other hand, is the process of 
improving and combining the traits of the currently 
known solutions, as done by the crossover operator in 
evolutionary algorithms, for instance. Exploitation 
operations often incorporate small changes into already 
tested individuals leading to new, very similar solution 
candidates or try to merge building blocks of different, 
promising individuals. They usually have the 
disadvantage that other, possibly better, solutions located 
in distant areas of the problem space will not be 
discovered.(Weise 2009) 

Figure 7: Convergence to the Optimum (Objective 
Function Values in Series) - Objective Function 
Maximization 
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5.6. The Frequency of Using the Database Records 
Because we mapped all the possible solutions and their 
objective function values in the search space and found 
the lower and upper bounds of the objective function of 
the simulation model we could count the relative 
frequencies of the feasible solutions objective function 
values between the specified range. We divided the 
whole interval of objective function values into 100 
smaller parts - intervals (𝑛 = 100) with the same step:  

 

𝜀𝐹 =
|𝐹(𝑿̂) − 𝐹(𝑿̌)|

𝑛
 

(46) 

 
where 𝑛 denotes the number of smaller intervals of the 
objective function values of feasible solutions with the 
defined size of the interval - 𝜀𝐹.  
We calculated how often the objective function values 
occur within different ranges of objective function 
values: 
 

𝐹𝑅𝑗, 𝑗 ∈ [1, 𝑛]

=

{
 
 

 
  𝐹𝑅𝑗 + 1  if (𝐹(𝑿𝑖) ≥ 𝜀𝐹 ∗ (𝑗 − 1) + 𝐹(𝑿̌))

      ∧ (𝐹(𝑿𝑖) < 𝐹(𝑿̌) + 𝜀𝐹 ∗ (𝑗 − 1) + 𝜀𝐹),

      𝑖 ∈ [1, 𝑁𝐶𝑆]

  𝐹𝑅𝑗 + 0    else

 

 

(47) 

Where 𝐹𝑅𝑗 denotes the frequency of the feasible 
solutions’ objective function values; 𝑗 denotes the index 
of the small interval of the objective function value, 
𝐹(𝑿𝑖) denotes the objective function value of the i-th 
feasible solution belonging to the interval of the objective 
function; 𝑁𝐶𝑆 denotes the number of feasible solutions 
in the interval of the objective function value; 𝜀𝐹 denotes 
the size of the range of the smaller interval. 
We calculated the percentage relative frequency of each 
smaller interval. 

Figure 8 shows the percentage of the calculated relative 
frequencies of the mapped objective function values of 
the discrete event simulation model considering the 
intervals of the objective function values. These data 
series reflect the quality of the feasible solutions in the 
search space of the modelled problem. 

We also tested the series of the boxplot characteristics of 
the weighted sum to obtain and compare their quality due 
to their relative frequency of using the database records. 
Other charts show the percentage of relative frequencies 
of the objective function values found by the different 
SOMA strategies using the boxplot characteristics series 
– see Figure 9. 

If we compare the relative frequencies of the mapped 
objective function values of the discrete event simulation 
model and the relative frequencies of the objective 
function values found by the optimization method, the 
strategies tend towards a strong convergence on the 
global optimum. If we select less suitable optimization 

method settings the relative proportion starts to increase 
in other areas of the interval. Appropriate setting of the 
optimization method leads to a lower number of 
optimization experiments to find the global optimum (a 
steeper convergence on the global optimum and a lower 
relative frequency in the area of global extremes of the 
objective function values). 
 

 
Figure 8: Relative Frequencies of The Objective 
Function Values – Objective Function Maximization 

 

 
Figure 9: Frequency of Using Database Record - 
Objective Function Maximization 

 

6. CONCLUSION 
The testing of the SOMA optimization method 
confirmed that it is quite a successful and generic 
optimization method according to the different objective 
function landscapes of our tested AGV Transport model. 
This method found the global optimum or candidate 
solutions even in the case of the worst settings of this 
optimization method.  

If we focus on the optimization method success and the 
convergence to the optimum during the optimization 
process, the AllToAllAdaptive strategy and AllToRand 
are successful strategies of the SOMA optimization 
method.  These strategies are prone to wrong 
optimization method parameters settings in our discrete 
event simulation model. These strategies are followed by 
the SOMA strategy AllToOne.  

The AllToAll strategy is not useful when the second 
termination allows a small number of simulation 
experiments to be performed. This strategy supports the 
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exploration and it needs to perform more simulation 
experiments to find the global optimum We tested this 
strategy with a higher number of simulation experiments, 
which SOMA can perform in the series.  
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