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ABSTRACT 

In connection with the expansion of 3D scanners, 3D 

object modeling has become highly studied in recent 

years. Many methods are currently available to solve the 

registration problem, whereby unknown transformation 

parameters need to be estimated when targeting a 3D 

object in multiple scans from different locations. Two 

different problems are encountered in the practice of 

targeting 3D objects in geodesy or construction. In the 

first variant, the measurement of the coordinates of the 

points of the 3D object is realized in several scans on tens 

of points marked with targets on a reflective surface. In 

the second variant, measurements of the coordinates of 

"clouds of hundreds or thousands of points" are available 

in several scans from different coordinate systems. In 

clouds it is necessary to find matching pairs of points, 

called identical points, based on their color match. In 

both versions, the coordinates of identical points from 

different coordinate systems must be recalculated to the 

selected coordinate system during data fusion. The 

problem leads to finding unknown shift and rotation 

transformation parameters. The aim of this article is to 

simulate the measurement of identical points in multiple 

scans. We will create a test task that can be used to test 

the methods proposed to solve the registration problem. 

Keywords: registration problem, 3D range scanning, 

transformation of coordinates, point clouds 

1. INTRODUCTION

The 3D range scans fusion is called registration. If the 

localization in a space or user’s measurements are 

precise, the registration could be done directly by 

individual measurement connection into one group. 

However, due to inaccuracy of measurement sensors and 

the erroneous self-localization, the registration has to be 

considered. 

In recent years, many methods have been developed to 

solve the registration problem that occurs in 3D scanning 

of objects. 3D cameras are sources of a large set of 

measurement points. When needed to recognize a 3D 

model of an object from the point clouds, an efficient 

method for identifying identical points is required. 

Obtained identical points are measured in different 

coordinate systems and it is necessary to find unbiased 

estimates of these transformation parameters. 

The most commonly used algorithms are: ICP Algorithm 

(He, Liang, Yang, Li, and He 2017), Normal distribution 

transform (Magnusson 2013), Feature based registration 

(Nüchter 2009), Iterative dual correspondences (Lu and 

Milios 1997), Probabilistic iterative correspondence 

method (Montesano, Minguez, and Montano 2005), 

Quadratic patches (Mitra, Gelfand, Pottmann, and 

Guibas 2004), Likelihood-field matching (Burguera, 

Gonzalez, and Oliver 2008), Conditional random fields 

(Bataineh, Bahillo, Díez, Onieva, and Bataineh 2016), 

PointReg (Olsen, Johnstone, Kuester, Driscoll, and 

Ashford 2011). These method ensembles exhibit a lot of 

interesting properties, and required accuracy of 

estimation is widely met. Helmert transformation plays a 

key role, cf. (Amiri-Simkooei 2018). Three dimensional 

(3D) coordinate transformations are generally given by 

three origin shifts, three axes rotations, three scale 

changes and three skew parameters.  

Unfortunately, in literature there exists no dataset with a 

simple testing problem with known solution of such a 

problem. Therefore, we will try to prepare such a test 

problem. 

In this paper, the ICP algorithm will be presented in a 

very general manner without any assumptions of the 

point clouds feature to be assigned. A semi-automatic 

procedure for identic point segmentation, outlier 

elimination and transformation parameters estimation in 

point clouds will be explored on our testing problem.  

2.1. Basic ideas of ICP algorithm 

During the last years researchers used ICP very often, see 

(He, Liang, Yang, Li, and He 2017). The first reason is 

its easy feasibility. The second reason is almost no limits 

on point cloud size. 

The algorithm calculates the optimal rotation and 

translation for the model to minimize the distances 

between the corresponding points. 

In the first step, the algorithm tries to find matching pairs 

of points from both clouds. 

In the second step, it updates the rotation matrix and the 

shift vector based on the initial point assignment. 
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Then, according to the rotation matrix and the shift 

vector, it transforms a point cloud. 

Given two independently acquired sets of 3D points from 

position 𝑃1 and 𝑃2, we want to find the transformation

(𝑹, 𝒕) consisting of a rotation matrix 𝑹 and a translation 

vector 𝒕 which minimizes the following cost function 

𝐸(𝑹, 𝒕) = ∑ ∑ 𝑤𝑖,𝑗‖�̂�𝑖 − (𝑹𝑑�̂� + 𝒕)‖
2𝑁𝑑

𝑗=1 .
𝑁𝑚
𝑖=1  (1) 

(1) 

𝑤𝑖,𝑗 is assigned 1 if the i-th point of �̂�𝑖 describes the

same point in space as the j-th point of �̂�. Otherwise 𝑤𝑖,𝑗

is 0. Two things have to be calculated: First, the 

corresponding points, and second, the transformation 
(𝑹, 𝒕) that minimizes 𝐸(𝑹, 𝒕) on the base of the 

corresponding points. The ICP algorithm calculates 

iteratively the point correspondences. In each iteration 

step, the algorithm selects the closest points as 

correspondences and calculates the transformation (𝑹, 𝒕) 

for minimizing equation 𝐸(𝑹, 𝒕). 

Indeed, on one hand, the quality of results is affected 

essentially by the camera accuracy. On the other hand, 

the number of correctly identified points in different 

scans is important. 

Therefore, there are still many interesting open 

questions. 

Figure 1: Chapel’s plan and four coordinate systems 

2. ONE SIMULATED PROBLEM

In the following subchapters we will present one 

simulated problem, the solution of which appears in 

Chapter 3.  

We base our example on the 3D description of the Chapel 

of Saint Anna in Pardubice. 

Consider that the actual geometric shape of the chapel's 

plan is an equilateral trapezoid. Next, let's work with 

measurements in four coordinate systems. See Fig. 1. 

Next, we will prepare X, Y, Z, and HSV color 

simulations of point clouds in 4 scans that will contain 

identical and non-identical points. 

However, collecting of theoretical true values and noisy 

data are our interest.  

Studies of covariance matrices of HSV are well suited for 

the investigation of color transformation of the same 

point between scans. 

2.1. The first step: coordinate simulation  

The similar numerical example with two scans is given 

in (Marek, Rak 2015) that is focused on simulating only 

3D coordinates in two scans. 

Let us denote the northwest wall as side 1, the southwest 

wall as side 2, the southeast wall as side 3 and the 

northeast wall as side 4. See Fig. 1. 

We simulate point cloud measurements in 4 scans (two 

sides 1-2, 2-3, 3-4, 4-1 are scanned in each scan). 

In this task, we simulate the positions of several thousand 

points in clouds for these scans. 

We have the model given by 

𝒀 =  

[
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𝐼

𝒀2
𝐼
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𝐼𝐼
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𝐼𝐼

𝒀3
𝐼𝐼𝐼

𝒀4
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=  
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+  𝜺, (2) 

 𝜺 ~ 𝑁(𝟎, ),   =  (

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

) (3) 

Notation of model 𝒀 = 𝒂 + 𝜺 ~ 𝑁 [ 𝟎 + 𝒂, 𝚺 ] means 

that observation vector Y (with elements 𝒀1
𝐼  and 𝒀1

𝐼𝑉) has

(symbol ~ ) multinomial normal distribution with mean 

value (𝒂1
𝐼 , …, 𝒂1

𝐼𝑉) and with covariance matrix Σ.

3ni-dimensional vector 𝒂1
𝐼  is the vector of true 

coordinates 𝑛𝑖 points on i-th side of object in a coordinate

system of i-th device position. Analogous 𝒂1
𝐼  is 3 𝑛𝑖+1-

dimensional vector of 𝑛𝑖+1 points on (i + 1)-th side of an

object in a coordinate system of i-th device position. 

From layout of measurement we can obtain constraint 

function 

𝒈 =

[
 
 
 
 
 
 
𝒈2

𝐼𝐼(𝜸2, 𝑻2)
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=  

[
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𝐼

𝒂3
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= 0 (4) 

Notation of model 𝒀 = 𝒂 + 𝜺 ~ 𝑁 [ 𝟎 + 𝒂, 𝚺 ] means 

that observation vector Y (with elements 𝒀1
𝐼  and 𝒀1

𝐼𝑉) has

(symbol ~ ) multinomial normal distribution with mean 

value (𝒂1
𝐼 , …, 𝒂1

𝐼𝑉) and with covariance matrix Σ.

 

 

 

 

        

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

365



  
    a) 1st and 2nd sides (scan 1) b) 2nd and 3rd sides (scan 2) 

 

  
    c) 3rd and 4th sides (scan 3) d) 4th and 1st sides (scan 4) 

Figure 2: Scans of the chapel 

 

Proceedings of the European Modeling and Simulation Symposium, 2019
ISBN 978-88-85741-25-6; Affenzeller, Bruzzone, Longo and Pereira Eds.

366



3-dimensional vector 𝒂1
𝐼  is the vector of true coordinates 

𝑛𝑖 points on i-th side of object in a coordinate system of

i-th device position. Analogous 𝒂1
𝐼  is 3 𝑛𝑖+1-dimensional

vector of 𝑛𝑖+1 points on (i + 1)-th side of an object in a

coordinate system of i-th device position. 

From layout of measurement we can obtain constraint 

function 

𝒈 =

[
 
 
 
 
 
 
𝒈2

𝐼𝐼(𝜸2, 𝑻2)

𝒈3
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𝐼𝐼𝐼(𝜸3, 𝑻3)

𝒈4
𝐼𝐼𝐼(𝜸3, 𝑻3)

𝒈4
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𝒈1
𝐼𝑉(𝜸4, 𝑻3)]

 
 
 
 
 
 

=  

[
 
 
 
 
 
 
𝒂2

𝐼𝐼 − 𝜸2 − 𝑻2𝒂2
𝐼

𝒂3
𝐼𝐼 − 𝜸2 − 𝑻2𝒂3

𝐼
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𝐼
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𝐼𝑉 − 𝜸4 − 𝑻4𝒂1

𝐼 ]
 
 
 
 
 
 

= 0 (4) 

Let the true model of our chapel in coordinate system S0 

be given. We will consider that the base of our chapel is 

is an equilateral trapezoid with length of sides 4.500 m, 

4.300 m and 5.051 m. Now we will set origins of 

coordinate systems S2, S3, and S4, see Tab. 1. 

Further, we consider that matrices T2, T3, T4 are given as 

𝑻𝑖 = (
𝑹𝑖 0
0 1

),  𝑹𝑖 = (
𝑐𝑖 𝑠𝑖

−𝑠𝑖 𝑐𝑖
), (5) 

where 𝑐𝑖 = cos(𝜃𝑖) ,  𝑠𝑖 = sin(𝜃𝑖)  e.g. transformation

do not change vertical position of chapel. 

According to our experiment and obvious uncertainty of 

3D camera, we consider that the standard deviation 

𝜎𝑑 = 2 cm. Of course such value is large measurement

error. 

A following numerical study will be made. Firstly we 

transform coordinates 𝒂0 of points on true trapezoid

model from coordinate system S0 to S1.   

We will use transformation: 𝒂1 = 𝜸1 + 𝑻1𝒂0.

We set 𝛾1 = [44.000, 90.000]’  and 𝜃𝑖 =
4

3
𝜋 ⇒

𝑹1 = (
 cos(240°) ,  sin(240°)

−sin(−240°) ,  cos(240°) 
) . 

Using formulas 𝒂2 = 𝜸2 + 𝑻2𝒂1, 𝒂3 = 𝜸3 + 𝑻3𝒂2,

𝒂4 = 𝜸4 + 𝑻4𝒂3 we obtained coordintes of points in

every coordinate system S1, S2, S3, S4. From data 𝒂1, 𝒂2,

𝒂3, 𝒂4 it is possible to obtained only points 𝒂1
𝐼 , 𝒂2

𝐼 , 𝒂3
𝐼 ,

𝒂4
𝐼  that lie only on first, second, third or fourth side of 

our object. 

To these exact coordinates we add measurement errors 

by generating independent epsilon errors. With respect to 

the origins of coordinate systems we then extracted the 

simulated (measured) values of Y, cf. model (1). 

The simulated values are available on the website 

(Nedvědová 2019).  

Table 1 presents the transformation parameters between 

start and target coordinate systems.  

Part of the coordinates of identical points are given in 

Table 3. 

Table 1: True transformation parameters 

Sides 

Scans 1,2 to 2,3 2,3 to 3,4 4,1 to 1,2 

Shift -50, 30 65, 125 118, 38 

𝜃𝑖 65° 148° 244° 

Rota-

tion 

0.42 0.91
−0.91 0.42

−0.85 0.53
−0.53 −0.85

−0.44 −0.90
0.90 −0.44

2.2. The second step: HSV simulation 

First, we select points of the same type that appear in 

photos taken from different locations. 

For 12 color groups with ten-point color, we obtained 

HSV measurements in two scans for every chaple’s side. 

For example, the fifth color group was created from 

points on the stone plinth of the chapel. Points were 

focused in the 1st and 2nd scans. 

The diagram in the figure 3 shows information about in 

which scans the color groups were selected and targeted. 

By analyzing data containing 12 times 10 points, we 

estimate the variability of HSV components. Averages 

and standard deviations of HSV measurement for all 

color group are given in Tab. 2. 

Figure 3: Group diagram 
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Table 2: Pairs of HSV measurements 

  Average HSV 

 H S V 

Group 5, Scan 1 49.2156 26.7981 3.3147 

Group 5, Scan 2 73.9066 26.1388 3.3262 

Group 6, Scan 1 48.3860 25.6160 5.2158 

Group 6, Scan 2 72.6436 26.8238 5.2061 

  

 Standard deviation 

 H S V 

Group 5, Scan 1 0.3631 0.5231 0.1314 

Group 5, Scan 2 0.5552 0.2982 0.1328 

Group 6, Scan 1 0.2376 0.3285 0.7499 

Group 6, Scan 2 0.3480 0.1971 0.7570 

 

We created a matrix of differences in HSV values in 

these two scans, which has a dimension of 120x3. For 

these measurements, we have obtained a 3x3 covariance 

matrix that describes the variability and dependence of 

HSV components. This matrix is shown in formula (6). 

 

𝑉(𝐻, 𝑆, 𝑉) =  (
0.14 0.0004 0.003

0.0004 0.0142 0.0014
0.003 0.0014 0.0016

)  (6) 

 

However, we did not use this matrix for simulation. For 

all 12 color groups, we determined the variance matrices 

using 10 points measured in two scans: 

 

𝑉1(𝐻, 𝑆, 𝑉) =  (
0.0665 0.0028 0.0040
0.0028 0.0199 0.0020
0.0040 0.0020 0.0005

)  (7) 

 

𝑉2(𝐻, 𝑆, 𝑉) =  (
0.2086 0.0943 0.0587
0.0943 0.4476 0.1554
0.0587 0.1554 0.0959

) ⋅ 10−3 

 

𝑉3(𝐻, 𝑆, 𝑉) =  (
0.0055 −0.0001 −0.0002

−0.0001 0.0007 −0.0003
−0.0002 −0.0003 0.0002

) 

 

𝑉4(𝐻, 𝑆, 𝑉) =  (
0.5728 −0.0153 0.0033

−0.0153 0.0052 0.0004
0.0033 0.0004 0.0002

) 

 

𝑉5(𝐻, 𝑆, 𝑉) =  (
0.0003 0.0007 0.0000
0.0007 0.0059 0.0008
0.0000 0.0008 0.0003

) 

 

𝑉6(𝐻, 𝑆, 𝑉) =  (
0.0027 −0.0011 −0.0004

−0.0011 0.0006 0.0003
−0.0004 0.0003 0.0002

) 

 

𝑉7(𝐻, 𝑆, 𝑉) =  (
0.0005 −0.0004 −0.0000

−0.0004 0.0034 0.0003
−0.0000 0.0003 0.0001

) 

 

𝑉8(𝐻, 𝑆, 𝑉) = (
0.0034 0.0111 −0.0088
0.0111 0.2452 −0.0339

−0.0088 −0.0339 0.0446
) ⋅ 10−3 

 

𝑉9(𝐻, 𝑆, 𝑉) = (
0.0062 −0.0212 −0.0022

−0.0212 0.5339 −0.0983
−0.0022 −0.0983 0.4110

) ⋅ 10−3 

 

𝑉10(𝐻, 𝑆, 𝑉) =  (
0.0001 −0.0002 −0.0000

−0.0002 0.0010 −0.0006
−0.0000 −0.0006 0.0012

) 

 

𝑉11(𝐻, 𝑆, 𝑉) =  (
0.0002 0.0001 −0.0000
0.0001 0.0060 −0.0017

−0.0000 −0.0017 0.0009
) 

 

𝑉12(𝐻, 𝑆, 𝑉) =  (
0.0513 −0.0375 0.0122

−0.0375 0.2651 −0.1361
0.0122 −0.1361 0.1053

) ⋅ 10−3 

 

We can proceed as follows. 

To the points simulated by transformation parameters 

given in Table 1, HSV values simulation was added. We 

selected the exact HSV value for any point on our object. 

We randomly selected one of the 12 covariance matrices 

V1 to V12. Using this randomly chosen covariance matrix, 

we simulated measurements for two different scans 

twice. During the simulation we assumed normal error 

distribution of HSV and chosen covariance matrix V. We 

used simple simulation technique for normal data with 

estimated prespecified covariance matrix. For detail see 

(Kaiser, 1962). 

We use funcction R = mvnrnd(, ), that returns an N-

by-D matrix R of random vectors chosen from the 

multivariate normal distribution with mean vector ,  and 

covariance matrix . 

 

3. NUMERICAL STUDIES 

3.1. Estimation in our test problem 

The ICP method is applied to our data set. The estimated 

parameters are presented on the website (Nedvědová 

2019). 

According to the articles (Amiri-Simkooei 2018) and 

(Marek 2015) we calculate the transformation 

parameters for the task. We applied the ICP method from 

Point Cloud Library (Rusu and Cousins 2011) to find 

pairs of identical points between scans based on the 

similarity of HSV values to estimate the transformation 

parameters. 

We just decide to use the HSV color model on base of 

our previous research (Chmelar and Benkrid 2014) and 

(Chmelar, Beran and Kudriavtseva 2015), where for a 

color detection form static frames the HSV model 

overcomes standard used color models. Its advantage lies 

in color description by only one channel. Other channels 

describes a concrete color’s properties. 

The following figure shows comparison between RGB 

Fig. 4 (a) and HSV Fig. 4 (b) color space for the exact 

color. When we match similar color from different 

chapel’s sides the bigger color span in the color space it 

is more suitable, but when the ICP algorithm’s 

parameters are properly set, than the precise match is 

achieved. 
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Table 3: Simulation of HSV: identical points 

Point: X, Y, Z 

  H, S, V 

No 51: 

Scan 1 

60.6841 

48.7407 

7.1315 

26.1132 

47.2399 

4.2658 

No 51: 

Scan 2 

10.8373 

73.4339 

27.6623 

26.4070 

84.1735 

2.6310 

No 52: 

Scan 1 

68.2305 

48.4720 

3.1235 

25.7026 

46.3298 

4.5565 

No 52: 

Scan 2 

11.1249 

73.4181 

27.2490 

26.4010 

86.7095 

2.7851 

No 53: 

Scan 1 

59.4553 

48.1522 

5.6575 

25.3072 

47.4210 

4.2163 

No 53: 

Scan 2 

10.3987 

73.1719 

31.7112 

26.5519 

86.7758 

2.8363 

No 54: 

Scan 1 

63.3525 

48.0840 

4.0797 

25.1802 

47.2996 

4.9363 

No 54: 

Scan 2 

9.0201 

73.4261 

35.0025 

26.3800 

85.3573 

3.1580 

No 55: 

Scan 1 

65.6075 

48.6650 

3.1142 

25.9867 

46.2436 

5.0952 

No 55: 

Scan 2 

11.7636 

73.2439 

23.8849 

26.5146 

88.5562 

3.1231 

No 56: 

Scan 1 

56.8741 

48.3353 

5.8002 

25.5887 

47.3855 

5.1940 

No 56: 

Scan 2 

10.1819 

73.1590 

26.9011 

26.5272 

88.6639 

3.2359 

No 57: 

Scan 1 

54.3685 

48.6171 

11.6568 

25.9424 

51.7027 

5.6725 

No 57: 

Scan 2 

10.9817 

73.3495 

28.4105 

26.4477 

83.5378 

3.2783 

No 58: 

Scan 1 

66.4225 

48.1491 

0.5393 

25.3256 

44.5333 

5.7490 

No 58: 

Scan 2 

11.7224 

73.4699 

26.7111 

26.3413 

88.0017 

2.9403 

No 59: 

Scan 1 

64.3876 

48.4461 

4.5814 

25.7048 

46.5366 

6.0703 

No 59: 

Scan 2 

11.3594 

73.2436 

27.9017 

26.4897 

87.5473 

2.7728 

No 60: 

Scan 1 

59.5184 

48.1983 

6.1586 

25.3090 

46.3937 

6.4026 

No 60: 

Scan 2 

10.0160 

73.1467 

27.1193 

26.5443 

89.3212 

2.6745 

Figure 4: Color space span for exact color, (a) RGB 

model, (b) HSV model 

The testing dataset includes four registration cases. Each 

case describes registration of two chapel’s sides with 

identical points, sides 1-2, 2-3, 3-4 and 4-1.  

4. CONCLUSION

In this paper, we presented the process of simulation of 

data for a registration problem. We designed the testing 

example for multi-stage 3D coordinate transformations. 
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