
 
 

 
 
 

 
 

 
 
 
 
ABSTRACT 
Given that warehouses play a central role in modern 
supply chains, this study proposes the application of an 
algorithm for the capacitated vehicle routing problem 
(CVRP) based on the two-index vehicle flow 
formulation developed by Baldacci, Hadjiconstantinou, 
and Mingozzi (2004) for picking purposes in manual 
warehouses. The study of Theys et al. (2010) is first 
used to represent the warehouse using a Steiner 
traveling salesman problem (TSP). Then, a calculation 
of the picking tour’s length is obtained applying the 
Manhattan distance. Finally, the algorithm for the 
CVRP is solved through a cutting plane with the 
addition of termination criteria related to the capacity of 
picker. The study analyzes four different warehouse 
configurations, processing five picking list each. The 
analysis is carried out exploiting the commercial 
software MATLAB®, to determine the solution that 
minimize distance of the order picking tour. The results 
obtained in MATLAB® show the effectiveness of the 
chosen algorithm applied to the context of manual order 
picking. 
 
Keywords: order picking, picking distance, capacitated 
vehicle routing problem, manual warehouse. 
 
1 INTRODUCTION 
Warehouse management is a primary issue for logistics 
companies (Cheng et al. 2015). The logistics cost 
relating to warehouse processes, including receiving, 
storage, order picking and shipping, is often high (De 
Santis et al. 2018). Among these internal operations, 
order picking, i.e. the process of retrieving products 
from their storage locations in a warehouse in order to 
satisfy the requests of the customers, is an important 
and yet tedious task (Hsieh and Tsai 2006; Muter and 
Öncan 2015). To be more precise, order picking process 
is considered the most laborious task in warehouses 
accounting for up 65% of the total operating costs 
(Gademann and van de Velde 2005; De Koster, Le-Duc, 
ans Zaerpour 2012; Žulj et al. 2018). For this reason, 
both researchers and logistics managers consider order 
picking as a promising area for productivity 
improvement (De Santis et al. 2018).  

The travel time of pickers is an increasing function of 
the travel distance, which was investigated in many 
papers and considered one of the primary optimization 
conditions (Karasek 2013). The travel time is influenced 
by order picker routing policies, which determine the 
sequence of item retrieval in the warehouse and the 
sequence in which aisles are traversed (Grosse, Glock, 
and Ballester-Ripoll 2014). However, the performance 
depends greatly on the layout and size of the warehouse, 
the size and characteristics of orders and the order-
picker capacity (Dukic and Oluic 2007; Bottani, 
Montanari, and Rinaldi 2019). Sure enough, the 
problem becomes more complex if the carrying capacity 
of the order picker is limited (Grosse, Glock, and 
Ballester-Ripoll 2014). 
The problem of picking an order is the one of 
determining the sequence in which locations should be 
visited to minimize total cost (or time), which leads to 
the traveling salesman problem (TSP) (Daniels, 
Rummel, and Schantz 1998). In particular, the generic 
order picking problem is configurable as a Vehicle 
Routing Problem (VRP), which consists of constructing 
a set of at most m vehicle routes of least total distance, 
according to a portfolio of capacity and time 
constraints, and in order to simultaneously satisfy a 
group of retrieval requests (Ferrari, et al. 2003).  
However, according to our knowledge, the picker’s 
capacity is rarely considered when dealing with order 
picking problems. A VRP algorithm (and in particular 
an algorthm for the CVRP problem) is expected to well 
capture the order picking problem in the case of 
capacity constraints. 
These gaps will be addressed in the present study, by 
applying an algorithm for the capacitated vehicle 
routing problem (CVRP) to the manual picking process. 
The chosen algorithm has been proposed by Baldacci, 
Hadjiconstantinou, and Mingozzi (2004) and is based 
on the two-index vehicle flow formulation. The result of 
the algorithm, i.e. the estimate of the picking distance, 
shows the effectiveness of this algorithm to solve a 
manual order picking problem with capacity constraints.  
The paper proceeds as follows. The next section 
describes the simulation strategy adopted to estimate the 
picking distance and provides some preliminary 
information about the warehouse under examination. 
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Section 3 details the configurations considered and the 
main results obtained in this study. Section 4 discusses 
the main findings and concludes by highlighting the 
main limitations of this work and suggesting future 
research directions.  
 
2 METHODOLOGY 
2.1 Algorithms 
From a methodological point of view, the study of 
Theys et al. (2010) is first used to represent the 
warehouse using a Steiner TSP; then, a calculation of 
the picking tour’s length is obtained applying the 
Manhattan distance. Finally, the algorithm for the 
CVRP developed by Baldacci, Hadjiconstantinou, and 
Mingozzi (2004) is solved through a cutting plane with 
the addition of termination criteria related to the 
capacity of picker. The analysis is carried out exploiting 
the commercial software MATLAB®, to determine the 
best solution that minimize distances of the order 
picking tour. 
To be more precise, in the following we will present the 
formulation of the CVRP. 
A graph G= (V’, E) is given where V’={0,1,…,n} is the 
set of n+1 vertices and E is the set of edges. A 
nonnegative cost dij is associated with each edge {i, 
j} E. Let OP=={1,…,op} be the number of order 
picker with same capacity Q located in depot. Also, let 
OP(S) be the number of order picker with Q capacity 
required to pick up the required items in S.  
The integrality constraint is defined as follows: 
 

݆݅ݔ ൌ ൜1, ∀ሺ݅, ݆ሻ ∈ ൛\ܧ
ሼ0, ݆ሽ: ݆ ∈ ܸൟ

݁ݏ݅ݓݎ݄݁ݐ݋																											,0
 

 
(1) 

 
Now, the two-index problem can be mathematically 
formulated as the follows: 
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                                    (5) 

where T={S:SV, ≥2}. Constraint (3) is the degree 
constraints for each customer, i.e. each vertex must 
have an incoming and an outgoing arc. Constraint (4) is 
the cutting constraint which, for any subset S of 
customers that does not include the depot, imposes that 
at least OP(S) vehicles enter and leaves S. Constraint 
(5) states that OP vehicles must leave and return to the 
depot. 

The solution of the problem is not unique, because of 
the presence of more pickers. Hence, when running the 
algorithm, MATLAB® returns the first solution found 
that satisfies constraints 2-5. A check has been set in 
MATLAB® to verify that the solution returned meets 
the capacity constraint. In the case the solution found 
also meets this constraint, it is considered as the optimal 
solution to the problem. Otherwise, the algorithm is run 
again to identify a new solution.  

Problem formulation
without capacity constraint

(eqs.2‐5) 

Solution of the problem

Check of the capacity
constraint

Constraint
met?

Solution found

Start of the process

End of the process

Y

N

 

Figure 1: Flowchart of the algorithm in MATLAB® 
 

2.2 Warehouse settings 
The picking environment in this paper is as follows: 

 rectangular warehouse; 
 manual picker-to-parts order picking system; 
 random storage of items in the warehouse; 
 depot located at the top left corner of the 

warehouse; 
 the picking area uses double-side shelves with 

a total storage capacity of 640 SKUs; 
 each SKUs is 1.30x1.00 meter in width and 

depth, respectively; 
 aisle width is 2.50 meters. 

 
3 CONFIGURATIONS ANALYSIS 
For the purpose of testing the algorithm in various 
settings, 4 different warehouse configurations are 
evaluated in this study: 

 One block warehouses – 10 items –picker 
capacity = 300 

 One block warehouses – 20 items –picker 
capacity = 600 

 Three block warehouses – 10 items –picker 
capacity = 300 
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 Three block warehouses – 20 items –picker 
capacity = 600. 

For each configuration, 5 picking lists of the same 
length are processed. 
To model a capacity constrained problem, a weight is 
assigned to each item in the warehouse. The weight, 
expressed in kg, is generated by MATLAB® as a 
random number with values ranging between 0 and 100 
(step 1). The picker’s capacity instead, depends on the 
length of the order picking list: for a picking list of 10 
items, the picker’s capacity is set at 300, while for a 
picking list of 20 items, the picker’s capacity is set at 
600. In the picking lists with an equal number of items 
(i.e. 10 or 20), the same products (weights) are 
considered, regardless of the warehouse layout. The 
same consideration can be made for picking lists of 20 
items. Moreover, the instances of the problem are 
calculated for a number of pickers equal to two and 
three. 
In the following sections, the analysis of various 
configurations for the estimation of the picking distance 
is shown. For all configurations, an evaluation of the 
distance and computational time required to order 
picking activities is provided. 

3.1 One block warehouses – 10 items – picker 
capacity=300 

In this scenario, the configuration with one block 
warehouses, picking list of 10 items and picker’s 
capacity of 300 is analyzed. The results obtained from 
application of the algorithm are shown in Table 1 for 
the five order lines for the reference configuration. 

Table 1: Order picking distance for one block 
warehouses with 10 Items (picker’s capacity = 300) 

ORDER 
LINE 

TOTAL 
WEIGHT 

[kg] 

NUMBER 
OF 

PICKERS 

WEIGHT 
FOR 

PICKER 
[kg] 

DISTANCE 
[m] 

COMPUTATIONAL
TIME [s] 

1 408 

2 
185 

326.4 2.456 
223 

3 
21 

348.8 2.615 204 
183 

2 379 

2 
273 

278.4 1.278 
106 

3 
21 

319.2 1.012 106 
252 

3 632 

2 
- 

- - 
- 

3 
260 

432.2 0.978 75 
297 

4 485 

2 
279 

280.2 1.322 
206 

3 
34 

306.6 1.159 184 
267 

5 424 

2 
138 

258.6 1.322 
286 

3 
21 

268.8 1.021 111 
292 

As can be seen from Table 1, for all order lines, when 
increasing the number of pickers, a longer order picking 
distance is found. Nonetheless, it is interesting to note, 
that in the third order line with two pickers, the 

constraint of the picker’s capacity is not met; for this 
order line, therefore, the shortest distance is obtained 
where the number of pickers equals 3. Whereas, the 
trend of the computational time generally is inverse: 
decreasing the number of pickers involves an increase 
in the computational time. For first order line only, 
decreasing the number of pickers generates a lower 
computational time. 
 
3.2 One block warehouses – 20 items – picker 

capacity=600 
In this scenario, the configuration with one block 
warehouses, picking list of 20 items and picker’s 
capacity of 600 is analyzed. The picking distances and 
computational times are shown in Table 2 for the five 
order lines evaluated. 

Table 2: Order picking distance for one block 
warehouses with 20 items (picker’s capacity = 600) 

ORDER 
LINE 

TOTAL 
WEIGHT 

[kg] 

NUMBER 
OF 

PICKERS

WEIGHT 
FOR 

PICKER 
[kg] 

DISTANCE 
[m] 

COMPUTATION 
TIME [s] 

1 787 

2 
193 

430.4 3.875 
594 

3 
21 

450.8 2.273 172 
594 

2 1117 

2 
580 

496.8 2.491 
537 

3 
580 

517.2 2.354 34 
503 

3 884 

2 
599 

418.6 2.532 
285 

3 
270 

428.8 1.934 593 
21 

4 948 

2 
383 

522.2 3.215 
565 

3 
35 

532.4 2.773 331 
582 

5 1198 

2 
600 

525 141.276 
598 

3 
75 

539 211.992 546 
577 

As can be seen from the table above, for all order lines, 
decreasing the number of pickers involves a shorter 
order picking distance. It is interesting to note that the 
trend of the computational time is opposite: when 
increasing the number of pickers, the computational 
time decreases. For the last order line only, decreasing 
the number of pickers causes a decrease in the shorter 
computational time as well. 
 
3.3 Three block warehouses – 10 items – picker 

capacity=300 
In this scenario, the configuration with three block 
warehouses, picking list of 10 items and picker’s 
capacity of 300 is analyzed. The picking distances and 
computational times obtained with this configuration 
are shown in Table 3. 
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Table 3: Order picking distance for three block 
warehouses with 10 items (Picker’s Capacity = 300) 

ORDER 
LINE 

TOTAL 
WEIGHT 

[kg] 

NUMBER 
OF 

PICKERS 

WEIGHT 
FOR 

PICKER 
[kg] 

DISTANCE 
[m] 

COMPUTATION 
TIME [s] 

1 408 

2 
247 

273.4 3.2681 
161 

3 
21 

313.8 1.6411 173 
214 

2 379 

2 
84 

263.7 1.1561 
295 

3 
63 

304.5 0.9844 21 
295 

3 632 

2 
- 

- - 
- 

3 
75 

336.5 1.6062 297 
260 

4 485 

2 
189 

251.6 1.255 
296 

3 
70 

284.3 1.6078 119 
296 

5 424 

2 
135 

234.6 1.3793 
289 

3 
111 

255 1.4678 24 
289 

As can be seen from Table 3, for all order lines, again 
the increase in the number of pickers involves a (slight) 
worsening of picking distance. Nonetheless, it is 
interesting to note that for the third order line with two 
pickers the constraint of picker’s capacity is not 
respected. This result was also found in the 
configuration with one block warehouse and two 
pickers. For this order line, therefore, the shortest 
distance is obtained when the number of pickers equals 
3. However, in this configuration, the computational 
time does not follow a linear trend: sometimes, it 
increases with the increase in the number of pickers, 
while sometimes it decreases. 
  
3.4 Three block warehouses – 20 items – picker 

capacity=600 
In this scenario, the configuration with three block 
warehouses, picking list of 20 items and picker’s 
capacity of 600 is analyzed. The results obtained from 
application of the algorithm are shown in Table 4 for 
the five order lines for the reference configuration. 

Table 4: Order picking distance for three block 
warehouses with 20 items (Picker’s Capacity = 600) 

ORDER 
LINE 

TOTAL 
WEIGHT 

[kg] 

NUMBER 
OF 

PICKERS 

WEIGHT 
FOR 

PICKER 
[kg] 

DISTANCE 
[m] 

COMPUTATION 
TIME [s] 

1 787 

2 
193 

336.1 2.964 
594 

3 
21 

376.5 4.147 172 
594 

2 1117 

2 
580 

326 2.696 
537 

3 
34 

357.9 2.883 580 
503 

3 884 
2 

285 
317.3 19.749 

599 
3 46 337 10.023 

239 
599 

4 948 

2 
412 

342.6 1.770 
536 

3 
35 

360.8 1.646 377 
536 

5 1198 

2 
598 

361.2 6.856 
600 

3 
75 

392.9 1.827 575 
548 

The results shown in the table above confirm the trend 
previously observed, i.e. for all order lines, decreasing 
the number of pickers involve a decrease in the picking 
distance. However, it is interesting to note that in this 
configuration, the computational time does not follow a 
linear trend: sometimes, it decreases with the number of 
pickers, while sometimes it increases. 
 
4 DISCUSSIONS AND CONCLUSIONS 
This paper has proposed an application of an algorithm 
for the CVRP based on the two-index vehicle flow 
formulation developed by Baldacci, Hadjiconstantinou, 
and Mingozzi (2004) for the problem of minimizing the 
travel distance of pickers in manual warehouses. In 
particular, the study of Theys et al. (2010) was first used 
to represent the warehouse using a TSP. The estimate of 
the picking tour’s lenght was then obtained through the 
Manhattan distance. Finally, the algorithm for the 
CVRP developed by Baldacci, Hadjiconstantinou, and 
Mingozzi (2004) is solved through a cutting plane with 
the addition of termination criteria related to the 
capacity of picker. The rationale for the choice of this 
algorithm is that the picking problem is frequently 
modelled as a TSP, of which the VRP is a special case; 
therefore, a VRP algorithm is expected to well capture 
the order picking problem. Moreover, CVRP model by 
Baldacci, Hadjiconstantinou, and Mingozzi (2004) takes 
into account the vehiche capacity in the problem 
formulation. This is an important (and innovative) 
point, as the picker’s capacity, on the contrary, is rarely 
considered when dealing with order picking problems. 
Rather, when modelling a manual order pickng process, 
researchers typically assume that the picker has enought 
capacity to pick all the items included in the picking 
list. 
In general terms, the best results from the proposed 
approach were observed with three block warehouses, 
in terms of the total distance covered. To be more 
precise, considering the first picking list of the first and 
third configuration (picking list of 10 items), it is 
interesting to note that the best solution in terms of 
distance travelled is returned by the three block 
warehouses configuration, both in the scenario with two 
and three pickers. The outcomes can be used by 
warehouse and logistics managers to identify the 
configuration of warehouses on which to focus with the 
aim to reduce the travel distance (and thus the order 
picking cost), considering the capacity of picker. 
From a technical perspective, it should be mentioned 
that the results obtained with the proposed approach 
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cannot be compared with either the traditional heuristic 
routing policies (e.g. S-shape, largest gap or return) or 
with metaheuristic approaches available in literature, 
because none of these approaches takes into account the 
capacity of the picker when modelling the problem. 
Therefore, a benchmark to evaluate the performance of 
the proposed approach is not available (to the best of the 
authors’ knowledge) at the time of writing. This could 
be seen as a limitation of the present work, as it 
prevents judging the performance of the proposed 
model. At the same time, however, as this paper takes 
into account the picker’s capacity among the problem 
constraints, the results returned could represent a viable 
benchmark for similar studies to be carried out in the 
future. 
A further limitation of the analysis made in this paper is 
that the present work does not take into account the 
combination of several orders into a single order to 
fulfill small orders (e.g., online orders directly by the 
final customer) in a batch picking process. Similarly, 
the situation with large orders, that need to be split up 
into smaller batches that are to be picked successively, 
is not taken into account in the model, as well. This 
could be a future adjustment to be made to the problem 
modelled. Finally, multiple order pickers in the same 
area can cause wait times due to picker blocking and 
increases the risk of accidents in the warehouse; these 
aspects are not included in the present evaluation, so 
they could be considered in future research activities.  
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