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ABSTRACT 

The scheduling of quay cranes is a core logistics 

challenge that affects significantly the loading and 

unloading time of a vessel berthed at a container 

terminal. In this paper, we study the Stochastic Floating 

Quay Crane Scheduling Problem involving cranes 

situated on the quay of an offshore modular platform. 

Specifically, we consider the case in which each crane is 

situated on a different module of the platform, thereby 

confining its operation range. Additionally, we assume 

stochastic crane productivity rates due to the effect of the 

offshore wind. To tackle the problem, we propose a 

simheuristic framework, which combines Iterated Local 

Search with Monte Carlo Sampling into a joint 

collaborative scheme. The main objective is to minimize 

the expected completion time of the loading and 

unloading process taking into account precedence, non-

simultaneity, non-crossing, and spatial constraints of the 

problem at hand. The performance of the proposed 

simheuristic is investigated on a set of established 

problem instances across different configuration 

parameters and under various real-world environmental 

scenarios offering insightful conclusions. 

 

Keywords: quay crane scheduling, optimization, 

simulation, offshore platforms. 

 

1. INTRODUCTION 

Maritime transport has always been the backbone of 

international trade and it is expected to maintain its 

prevailing position in the foreseeable future 

(Christiansen et al. 2007). Currently, more than 80% of 

global trade with respect to volume is transported by sea 

and is handled by seaports. In 2017, world seaborne trade 

attained a number of 10.7 billion tons of goods and recent 

predictions have revealed a raise of 3.2% between 2017 

and 2022 (UNCTAD 2018). This on-going world 

transport maritime development has already begun to 

alter significantly the shape of the contemporary 

seaports, which require now more than ever sustainable 

solutions to increase their size. The extension of the port 

area is not considered as a straightforward task, 

especially in the case that the land available onshore is  

 
Figure 1: A conceptual design of three quay cranes 

situated on the quay of the offshore modular platform 

(Gideonse 2018). 

 

fully exploited by the existing facilities. For this reason, 

an alternative option suggests the expansion of the port 

towards the sea by adopting new technological 

developments (Lamas-Pardo et al. 2015). 

Based on this suggestion, recent technological concepts 

include the extension of ports via the construction of 

floating platforms. In this direction, the European project 

Space@Sea (https://spaceatsea-project.eu/) proposes and 

investigates the implementation of an offshore modular 

platform in the proximity of the port of Antwerp. The 

platform acts as an additional offshore terminal with the 

major objective of extending the capacity of the port. 

Under this premise, all operations that occur at a typical 

terminal may also take place on the floating platform, but 

with increased complexity due to two main causes. The 

first cause is that offshore logistics activities are required 

to respect specific limitations of the platform structure 

such as the constrained movement of the cranes on the 

modules of the platform. The second one is that 

operations on the platform are affected by severe weather 

phenomena, which are more intense in the open sea. This 

fact is corroborated by a relevant study which reveals that 

wind speed offshore is at least 20% higher than onshore 

(van den Bos 1995). 

One of the most essential logistics operations within a 

terminal that affects significantly the time required for a 

vessel to stay in the port area is the loading and unloading 
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of its containers. The efficiency of this operation depends 

critically on the way and the order in which the quay 

cranes transfer containers, named crane scheduling. The 

so-called Quay Crane Scheduling Problem (QCSP) has 

received considerable research attention for over than 

three decades (Daganzo 1989). Up-to-now, a multitude 

of mathematical formulations along with numerous 

solution methods have been proposed mainly to tackle 

deterministic QCSPs (Bierwirth and Meisel 2009, 

Bierwirth and Meisel 2015, Daganzo 1989, Kim and 

Park 2004, Legato et al. 2012, Sammarra et al. 2007). In 

these works, deterministic settings for the involved 

problem parameters are assumed and, therefore, the 

uncertainty and dynamics related to container handling 

operations is not investigated (Al-Dhaheri et al. 2016). 

Hence, more research studies are needed to further 

enhance the so-far limited algorithmic artillery on 

stochastic QCSPs (Al-Dhaheri et al. 2016, Legato et al. 

2008). 

To the best of our knowledge, in research works that 

consider stochastic QCSPs, stochasticity is treated as a 

general concept modelled via arbitrary probability 

distributions. Even though current research has identified 

several sources of stochasticity for the QCSP (Chhetri et 

al. 2016, Tabernacle 1995, Zeng et al. 2011), the impact 

of any particular uncertainty factor on problem 

parameters or algorithmic performance still remains 

unexplored. Besides that, existing studies follow the 

assumption that the cranes are situated on the quay of 

onshore terminals, hence the increased complexity and 

relevant limitations of offshore paradigms are not taken 

into account. For this reason, the applicability of the 

proposed QCSP models seems to be questionable in the 

case that the quay is situated on an offshore floating 

structure. Additionally, none of the existing studies 

investigates the impact of environmental conditions on 

crane productivity rates and in turn how this affects the 

solution quality of the QCSP. 

In this paper, we study the Stochastic Floating Quay 

Crane Scheduling Problem (SFQCSP) where each crane 

is situated on a different module of an offshore platform 

as shown in Figure 1. To perform the loading and 

unloading operations, the cranes are able to shift in 

parallel alongside the vessel by using a dedicated rail-

track system. Additionally, we make the hypothesis that 

the platform is equipped with a fully autonomous crane 

system similar to that used at the Pasir Panjang terminal 

in the port of Singapore (Gustafsson and Heidenback 

2002). Therefore, only unmanned (un)loading operations 

are performed on the platform. Moreover, we assume 

stochastic crane productivity rates due to the variability 

in offshore wind speed. To tackle the problem, we 

propose a simheuristic framework that combines 

metaheuristic optimization and simulation into a joint 

collaborative scheme. Simheuristics have recently 

emerged as an interesting approach to cope with 

stochastic combinatorial optimization problems (Juan et 

al. 2015). Up-to-now, they have been used to provide 

solutions for several stochastic combinatorial 

optimization problems (Juan et al. 2014, Michalak and 

Knowles, 2016).  

The proposed simheuristic framework consists of a 

established local search algorithm, called Iterated Local 

Search (ILS), which offers high-quality solutions at low 

computation times (Lourenço et al. 2003). So far, the ILS 

has been successfully used to tackle combinatorial 

optimization problems in different application domains 

(Lourenço et al. 2003). However, to the best of our 

knowledge, this is the first study where the ILS is applied 

to the considered problem or any other quay crane 

scheduling challenge. Additionally, the proposed 

simheuristic integrates a Monte Carlo Sampling (MCS) 

approach used to compute the stochastic objective 

function of the considered stochastic crane scheduling 

problem (Shapiro 2003). The goal of the developed 

framework is to minimize the expected (un)loading times 

of the vessels that berth at the platform under the 

presence of precedence, non-simultaneity, non-crossing 

and spatial constraints. Different parameter 

configurations and various real-world environmental 

scenarios generated in accordance with the wind state at 

the location of the platform are used to investigate the 

performance of the proposed simheuristic. 

The remainder of the paper is structured as follows. 

Section 2 formally defines the considered problem while 

the employed simheuristic framework is presented in 

Section 3. The results of the simulation experiments are 

displayed in Section 4. Conclusions and directions for 

future research are given in Section 5. 

 

2. STOCHASTIC FLOATING QUAY CRANE 

SCHEDULING PROBLEM 

The studied Stochastic Floating Quay Crane Scheduling 

Problem (SFQCSP) is considered as a modification of 

the problem introduced in (Monaco and Sammarra 

2011). We assume a set of handling tasks 𝛺 =
{1, 2, … , 𝑛} and a set of quay cranes 𝑄 = {1, 2, … , 𝑞}. A 

task stands for loading or discharging a group of 

containers from the arriving vessel to the offshore 

floating platform or vice versa. Containers within a group 

share the same destination and are located at adjacent 

positions within the same compartment of the vessel, 

called a bay. Each task 𝑖 ∈ 𝛺 has a specific handling 

time, 𝑝i, and the group of containers of the task are 

located in a particular bay of the vessel, 𝑙i. For the sake 

of mathematical convenience, but without loss of 

generality, the beginning and the end of the container 

service are represented by the dummy tasks 0 and 𝑇 =
𝑛 + 1, respectively, with 𝑝0 = 𝑝T = 0. Based on these 

tasks, sets 𝛺0 = 𝛺 ∪ {0}, 𝛺𝛵 = 𝛺 ∪ {𝛵}, and 𝛺̅ = 𝛺 ∪
{0, 𝛵}, are additionally defined.  

Precedence constraints are specified between pairs of 

tasks located within the same bay. Such constraints are 

used to determine the ordering of task execution by 

ensuring that (i) unloading tasks must be performed 

before loading ones, (ii) loading tasks on the deck must 

be carried out after those in the hold, and (iii) unloading 

tasks on the deck must be completed before those in the 

hold. Also, there are tasks that cannot be processed 
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simultaneously because the containers involved in the 

tasks are located at adjacent bays which cannot be 

accessed by quay cranes for safety reasons. Let Φ be the 

set of task pairs for which a precedence relation exists 

and let Ψ be the set that includes the task pairs that cannot 

be processed simultaneously, defined as, 

 

𝛷 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝛺: 𝑖 has to be completed before 𝑗} 

𝛹 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝛺: 𝑖 𝑎nd 𝑗 cannot be processed  
          simultaneously}. 

 

We assume that the quay cranes are of the same type 

sharing identical technical characteristics (e.g. 

dimension, speed) and can move between adjacent bays 

within 𝑡̂ > 0 time units. Therefore, the required travel 

time for a crane from the bay position of task 𝑖, 𝑙𝑖, to the 

bay position of task 𝑗, 𝑙𝑗, is computed as 𝑡𝑖𝑗 = 𝑡̂ |𝑙𝑖 − 𝑙𝑗|, 

whereas the time for crane k from its initial bay position 

𝑙0
𝑘 to the bay position of task j, 𝑙𝑗 is equal to 𝑡0𝑗

𝑘 =

𝑡̂ |𝑙0
𝑘 − 𝑙𝑗|. Moreover, each crane 𝑘 ∈ 𝑄 adopts an initial 

bay position 𝑙0
𝑘 and a ready time 𝑟𝑘 ≥ 0. All cranes are 

allowed to preserve a single moving direction (i.e., 

unidirectional movement), either always handling the 

task located at the higher-indexed bay or the lower-index 

bay with respect to their current bay position. Multiple 

tasks can be processed sequentially by each crane, but 

each task must be assigned and completed by a single 

crane, therefore preemption between tasks is not 

permitted. 

As quay cranes are rail mounted on the offshore platform, 

two crane interference constraints are considered in the 

SFQCSP. The first one is called the non-crossing 

constraint and prohibits crossing of cranes as they move 

from one bay to another. The second one is named the 

safety constraint and states that a certain safety distance 

δ expressed in bay units has to be maintained between 

any two adjacent cranes. Additionally, a spatial 

constraint is taken into account to reflect the fact that 

each crane is situated on a different module of the 

platform. This constraint confines the operation range of 

a crane, thereby limiting its access to specific groups of 

bays. 

Typically, vessel (un)loading times exhibit different 

levels of volatility. Stochasticity may originate from 

various factors such as diverse weather conditions 

(Chhetri et al. 2016), deviations among operators 

experience and skill levels (Tabernacle 1995) as well as 

equipment failure (Zeng et al. 2011). In this study, only 

unmanned (un)loading operations are performed, hence 

operators experience and skill is not considered as a 

factor of uncertainty. Moreover, we do not take into 

account operation disruptions due to crane breakdowns. 

Therefore, in this work, weather conditions and 

specifically the wind speed at the location of the platform 

is the studied source of uncertainty rending crane 

productivity rates highly stochastic. To represent the 

uncertainty in the studied model, we first define crane 

productivity coefficients, denoted by 𝛼𝑘 ∈ [0,1], 𝑘 ∈ 𝑄, 

following the approach in (Legato et al. 2012). The 

productivity coefficients are determined by sampling 

crane productivity rates from real-world wind 

speed/crane productivity data. Then, the handling time of 

task 𝑖 assigned to crane k is set to 𝑝𝑖
𝑘 = 𝑝𝑖\𝛼𝑘, where 𝑝𝑖  

is the individual handling time of task 𝑖. The objective of 

the SFQCSP is to determine the expected completion 

time 𝐸(𝑐𝑖) of each task 𝑖 ∈ 𝛺, such that the expected 

completion time of the final task 𝑇, 𝐸(𝑐𝑇), (i.e., the 

expected makespan) is minimized. Therefore, the 

objective function value of the problem solution 

corresponds to the time required for the entire 

(un)loading process to complete. 

 

3. SIMHEURISTIC FRAMEWORK 

Simheuristics are algorithmic frameworks that combine 

optimization algorithms and simulation approaches into 

joint collaborative schemes (Juan et al. 2015). Such 

frameworks usually employ metaheuristic optimization 

to tackle the deterministic version of the problem at hand, 

whereas the computation of the stochastic objective 

function value is performed through simulation. In this 

study, the Iterated Local Search (ILS) algorithm 

(Lourenço et al. 2003) is used as the main optimization 

method, whereas we employ the Monte Carlo Sampling 

(MCS) approach (Shapiro 2003) to approximate the 

value of the expected makespan. Additionally, the 

proposed simheuristic framework is based on the 

assumption that high-quality solutions of the 

deterministic version of a problem are probable to be 

high-quality solutions also for the stochastic version 

(Juan et al. 2014). This section presents the employed 

simheuristic framework by providing details on its 

optimization and simulation counterparts as well as 

giving information on their integration. 

 

3.1. Iterated Local Search 

ILS is an established metaheuristic algorithm mainly 

used to tackle combinatorial optimization problems 

(Lourenço et al. 2003). The algorithm is based on the 

observation that the iterative application of local search 

(LS) does not always result in solution improvement. 

This is because the LS procedure is usually trapped at 

specific points of the search space, called local optima. 

To mitigate this issue, instead of starting the search from 

randomly generated solutions, ILS makes use of a 

specialized mechanism, called perturbation. 

Perturbation involves generating a new solution by 

applying proper modifications to the incumbent local 

optimum with the aim of exploring regions beyond the 

current basin of attraction. In this way, it is possible to 

probe neighborhoods that the LS heuristic cannot easily 

reach, thereby amplifying the exploration capabilities of 

the algorithm. 

The algorithm comprises four main components, which 

are defined prior to its execution. These are a method that 

generates an initial solution, a perturbation mechanism, a 

local search heuristic (i.e., neighborhood operator), and 

an acceptance criterion. The solution generation method 

creates an initial solution 𝑠0 either randomly or by 

employing a problem-specific heuristic technique. 

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2019 
ISBN 978-88-85741-27-0; Bottani, Bruzzone, Longo, Merkuryev and Piera Eds.           

64



Perturbation is applied to the current solution 𝑠 leading 

to a modified solution 𝑠′. Then, the LS heuristic comes 

into play and generates a local optimum 𝑠′′ based on 𝑠′. 
Finally, the acceptance criterion determines which 

solution will be given as input to the perturbation 

mechanism in the next cycle of the ILS. The algorithm is 

executed repeatedly until a predefined termination 

criterion is satisfied. In this study, the employed 

termination criterion is the number of local searches 

applied by the algorithm. Pseudocode of ILS is presented 

in Algorithm 1. Specifically, the provided pseudocode 

except for lines 3, 7, and 9 refers to the execution of the 

employed solution method. For more details on the ILS, 

the reader is referred to (Lourenço et al. 2003).  

In this study, we incorporate the ILS into the proposed 

simheuristic framework with the aim of determining 

high-quality solutions for the deterministic version of the 

problem at hand. To this end, we design the four main 

components of ILS tailored to the requirements of the 

considered problem. Next, detailed information is 

provided on the development of each one of these 

algorithmic components. 

 

3.1.1. Generation of initial solution 

To generate an initial solution for the considered 

problem, a two-step technique is incorporated into the 

ILS. In the first step, each crane is assigned the tasks that 

are within its operation range and cannot be allocated to 

other cranes. The second step involves distributing the 

remaining tasks uniformly at random among cranes that 

are allowed to work on the bays where the containers of 

the considered tasks are situated. Therefore, the 

employed generation technique makes certain that the 

initial solution satisfies the spatial constraints of the 

SFQCSP. However, it does not guarantee that the 

solution will respect the other constraints of the problem. 

To ensure that, the generation procedure is executed 

repeatedly until the new solution is feasible with respect 

to all other constraints of the SFQCSP. 

 

3.1.2. Perturbation mechanism 

Typically, the design of this mechanism is not a 

straightforward task as the perturbation has to guide the 

search away from the current basin of attraction, but not 

too far leading to a random restart. For the considered 

problem, the mechanism is developed on the swap of 

several tasks between each crane and its adjacent ones. 

The number of tasks swapped between two cranes, called 

the perturbation step and denoted by 𝑝st, plays a 

significant role in the success of the method. For this 

reason, its configuration is properly investigated in the 

experimental part presented in Section 4. The 

perturbation mechanism is executed repeatedly until it 

leads to a feasible solution with respect to the constraints 

of the SFQCSP. 

 

3.1.3. Local search heuristics 

For the considered problem, two local search heuristics 

are developed. The first one, called shift heuristic, works 

on the redistribution of tasks between adjacent cranes.  

Algorithm 1 Generic Simheuristic Framework 

Input: Problem and algorithm parameters 

Output: Solution and its objective function value 

for the deterministic and the stochastic version of  

the considered problem 
1: 𝑠0 ← GenerateInitialSolution() 
2: 𝑠 ← LocalSearch(𝑠0) 
3: 𝑚𝑠 ← MonteCarloSampling(𝑠) 
4: repeat 
5:      𝑠′ ← Perturbation(𝑠) 
6:      𝑠′′ ← LocalSearch(𝑠′) 
7:      𝑚𝑠′′ ← MonteCarloSampling(𝑠′′) 
8:      𝑠 ← AcceptanceCriterion(𝑠, 𝑠′′) 
9:      𝑚𝑠 ← BestSolution(𝑚𝑠, 𝑚𝑠′′) 
10: until termination criterion is satisfied 

 

The second one, named swap heuristic, interchanges 

tasks between cranes located in neighboring bays. 

Assuming an assignment of tasks per crane 𝜎𝑘, 𝑘 ∈ 𝑄 

and a unidirectional schedule 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑞), the 

shift heuristic reassigns each task of crane 𝑘 to cranes 

𝑘 + 1, 𝑘 − 1, located in the upper and lower bays of the 

current bay, respectively. In the case that any of these 

cranes is not present, the task is shifted to the existing 

one. As for the swap heuristic, each task of crane 𝑘 is 

assigned to crane 𝑘 + 1 and each task belonging to crane 

𝑘 + 1 is assigned to crane 𝑘. For both heuristics, special 

attention is paid to make sure that each inserted task is 

placed at the correct position, respecting the 

lexicographical order within 𝜎𝑘, 𝑘 ∈ 𝑄. 

 

3.1.4. Acceptance criterion 

The acceptance criterion determines which solution will 

be forwarded to the perturbation mechanism at the next 

cycle of the ILS. Two alternative solutions are compared 

at each cycle: the local optimum 𝑠′′ generated by the LS 

procedure in the current cycle of the algorithm and the 

local optimum 𝑠 produced in the previous one. Between 

these, the solution with the higher quality with respect to 

the value of the objective function is accepted and used 

at the next cycle of the algorithm. 

 

3.2. Monte Carlo Sampling 

MCS is a computational method that can be used to 

approximate the objective function value of a stochastic 

optimization problem (Shapiro 2003). Given an objective 

function 𝐹(∙), a probability distribution 𝑃 and a random 

sample {𝜔1, 𝜔2, … , 𝜔𝑚} of size 𝑚 drawn from 𝑃, a 

Monte Carlo estimator (also called expected objective 

function value) of 𝐹(∙) denoted by 𝑓𝑚(∙) is defined as: 

 

𝑓𝑚(𝑥) =
1

𝑚
∑ 𝐹(𝑥, 𝜔𝑖)

𝑚

𝑖=1

. (1) 

 

Note that the computation of 𝑓𝑚(∙) results in a numerical 

value whose precision depends on 𝑚. Typically, samples 

of larger size (i.e. more observations) lead to more 

accurate computations of 𝑓𝑚(∙).  
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The MCS is employed within the proposed simheuristic 

framework to compute the value of the expected 

makespan, which is the used objective function for the 

SFQCSP. Specifically, the local optimal solution 

generated by each LS procedure is given as input to the 

MCS, which is executed until a predefined stopping rule 

is satisfied. The employed stopping rule is presented in 

the Section 3.2.1. Lines 3 and 7 of Algorithm 1 refer to 

the execution of the MCS method. Note that this method 

is always applied after LS taking into account the 

hypothesis that there is a relation between high-quality 

solutions of the deterministic and the stochastic version 

of the considered problem. Furthermore, a so-called best 

solution procedure is developed (line 9 of Algorithm 1) 

to compare the solution for the SFQCSP of the current 

cycle (𝑚𝑠′′) with the solution that was generated in the 

former cycle (𝑚𝑠). Finally, the solution that achieves the 

lowest expected makespan is identified as the best 

solution. 

 

3.2.1. Stopping rule 

Determining the exact number of observations needed by 

MCS to achieve a specific level of precision is 

considered an intricate task. For this reason, instead of 

defining a specific sample size, we set a limit on the 

number of required simulations by computing the 

relative error of the generated sample. Following the 

study in (Ata 2007), the relative sampling error is defined 

as: 

 

RSE = 𝑧𝛼/2√𝑆𝑚
2 /𝑚, (2) 

 

where 𝑧𝛼/2 is the 𝑧 value of the confidence interval at 

significance level 𝛼, 𝑚 is the number of already 

performed simulations, and 𝑆𝑚
2  is the variance estimator 

of the sample. Then, the current simulation is terminated 

when: 

 

RSE ≤ 𝜇𝜀 𝑋̅𝑚, (3) 

 

where 𝑋̅𝑚 is an estimator of the sample mean over 𝑚 

observations and 𝜇𝜀 ∈ [0,1] is the given error threshold, 

which represents the level of precision. Eq. (3) acts as the 

stopping rule used to terminate any MCS conducted 

within the developed simheuristic framework. The 

benefit from employing this stopping rule is twofold: it 

enables the simulation to achieve the desirable level of 

precision while it also averts long and unnecessary 

simulations, thereby reducing considerably the execution 

time of the simheuristic. 

 

4. EXPERIMENTAL EVALUATION 

The goal of the experimental evaluation is to study the 

effect of different configurations of the developed 

approach on the solution quality. To accomplish this, we 

have conducted extensive simulation experiments 

adopting the set of instances introduced in (Kim and Park 

2004) and also used in (Bierwirth and Meisel 2009, 

Monaco and Sammarra 2011, Sammarra et al. 2007).  

Table 1: Characteristics of the used problem instances 

including bay ranges per crane (Kim and Park 2004, 

Monaco and Sammarra 2011). 
Set Instances |𝛺| |𝑄| Bays Bay ranges per crane 

A k13-k22 10 2 1 to 10 [1,7], [3,10] 

k23-k32 15 2 1 to 15 [1,10], [5,15] 

B k33-k42 20 3 1 to 20 [1-10], [5-15], [11-20] 

k43-k49 25 3 1 to 25 [1-12], [8-20], [13-25] 

 

Table 2: Parameter configuration of the developed 

approach. 
Parameter Description Value(s) 

𝑁LS Number of applied LS {51,101} 

𝑝st Perturbation step {1,2,3} 

m𝑚𝑎𝑥 Max sample size per MCS 2 x 104 

𝜇𝜀 Error threshold {1 x 10-2, 5 x 10-3} 

𝛼 Significance level 0.95 

 

Characteristics of these instances including limitations 

imposed on the operation ranges of the quay cranes are 

shown in Table 1. In this table, note that the number of 

considered tasks and available cranes are denoted by  

|𝛺| and |𝑄|, respectively.  

Our experimental study comprises two phases. In the first 

phase, the focus is on determining the best ILS variant 

with respect to the solution quality for the deterministic 

version of the problem. In the second phase, we 

incorporate the best algorithmic variant derived from the 

previous step into the simheuristic framework. During 

this step, our aim is to minimize the time required to 

(un)load a vessel (i.e., expected makespan) under 

different wind speed/crane productivity scenarios. The 

parameter configurations used in the experiments are 

displayed in Table 2.  

The simheuristic approach has been developed in Python 

3.7.0 using the Anaconda 1.8.7 framework. We 

performed the experiments on a Windows workstation 

consisting of an Intel© Xeon 3.70 GHz processor with 

32GB of RAM. 

 

4.1. Deterministic case 

As described in Section 3.1.3, two specialized 

neighborhood operators, called shift and swap heuristics, 

are used by the ILS. Moreover, we consider a low and a 

high computation budget with respect to the number of 

applied local searches in order to evaluate the 

performance of the algorithm under different 

computation scenarios. Specifically, the low budget case 

involves carrying out 51 local searches, whereas the high 

budget case refers to the application of the local search 

heuristic for 101 times, namely 𝑁LS ∈ {51,101}. Note 

that one local search is performed during the 

initialization phase of the algorithm whereas the 

remaining local searches are consumed by the main 

execution of the ILS. Also, we investigate the 

performance of three perturbation step values, namely 

𝑝st ∈ {1,2,3}. Overall, we experiment with 12 different 

configurations that correspond to an equal number of ILS 

variants. A number of 10 independent experiments per 

algorithmic variant and problem instance was conducted  
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Table 3: Results for the deterministic FQCSP - shift 

heuristic. 

 Low comput. budget  High comput. budget 

Inst. 𝑝st = 1 𝑝st = 2 𝑝st = 3  𝑝st = 1 𝑝st = 2 𝑝st = 3 

k13 453.0 453.0 453.0  453.0 453.0 453.0 

k14 546.0 546.0 569.4  546.0 546.0 563.1 

k15 513.0 513.0 520.2  513.0 513.0 517.8 

k16 312.0 326.4 316.8  312.0 319.2 316.8 

k17 453.0 453.6 464.1  453.0 453.6 455.7 

k18 375.0 379.5 382.2  375.0 380.4 387.6 

k19 552.0 556.8 556.8  552.0 562.8 558.0 

k20 399.0 399.0 399.0  399.0 399.0 399.0 

k21 465.0 465.0 489.0  465.0 481.2 496.8 

k22 540.0 540.0 540.0  540.0 540.0 540.0 

k23 576.3 576.0 581.1  576.0 576.0 581.4 

k24 666.0 666.0 667.8  666.0 666.0 669.6 

k25 741.0 742.8 746.4  741.0 741.0 743.7 

k26 642.0 642.0 642.3  642.0 642.0 643.2 

k27 660.0 660.0 667.5  660.0 660.0 663.9 

k28 531.0 531.0 534.9  531.0 531.0 538.8 

k29 807.0 813.6 816.0  807.0 807.0 813.0 

k30 891.0 895.8 893.4  891.0 900.6 894.6 

k31 570.0 570.0 576.0  570.0 570.0 573.0 

k32 597.0 597.0 612.3  597.0 597.0 612.3 

k33 642.0 642.0 642.0  642.0 649.8 642.0 

k34 741.0 741.0 741.0  741.0 741.0 741.0 

k35 687.9 686.4 718.2  688.8 684.0 697.8 

k36 729.0 729.0 729.0  729.0 729.0 729.0 

k37 510.0 510.3 530.7  510.0 510.6 525.3 

k38 650.4 651.9 666.3  640.5 648.3 658.2 

k39 526.8 525.0 535.5  525.0 525.0 538.2 

k40 567.0 567.0 574.8  567.0 567.0 585.0 

k41 588.6 589.8 629.7  588.0 589.2 630.9 

k42 578.7 591.9 606.3  573.0 573.0 589.2 

k43 876.3 899.7 896.4  876.0 888.3 912.9 

k44 823.5 835.8 849.9  822.6 830.1 849.0 

k45 837.6 840.0 841.2  836.4 839.4 842.4 

k46 720.9 723.6 721.8  712.5 717.0 708.0 

k47 792.6 793.8 793.2  794.1 793.2 793.2 

k48 666.0 670.2 666.0  666.0 666.0 666.0 

k49 896.1 902.7 903.3  894.6 898.5 899.4 

Mean 625.0 627.7 634.4  624.2 626.7 633.2 

 

resulting in 4.440 independent experiments in total. For 

each experiment, we recorded the best objective function 

value, which provides an estimate on the time units 

required to (un)load a vessel that arrives at the offshore 

platform. 

Tables 3 and 4 present the results for the application of 

the shift and swap heuristics, respectively. To compare 

the different approaches, we compute the mean value per 

variant over all considered problem instances. Regarding 

the shift heuristic, in Table 3 we find that the setting 𝑝st =
1 is the best configuration choice for both low and high 

computation budgets. On the contrary, higher 𝑝st values 

result in worse performance. This leads to the conclusion  

Table 4: Results for the deterministic FQCSP - swap 

heuristic. 

 Low comput. budget  High comput. budget 

Inst. 𝑝st = 1 𝑝st = 2 𝑝st = 3  𝑝st = 1 𝑝st = 2 𝑝st = 3 

k13 453.0 453.0 453.0  453.0 453.0 453.0 

k14 546.0 567.0 602.7  546.0 567.0 608.1 

k15 531.6 536.4 541.2  543.3 552.6 555.3 

k16 312.0 321.6 315.3  312.0 326.4 316.2 

k17 453.0 453.9 468.9  453.0 453.6 469.8 

k18 375.0 387.6 384.0  375.0 384.9 385.8 

k19 552.0 558.0 579.9  552.0 571.8 598.2 

k20 399.0 399.0 426.0  399.0 399.0 429.0 

k21 465.0 476.7 486.9  465.0 495.6 508.8 

k22 599.4 567.0 606.6  568.8 590.4 588.6 

k23 576.0 576.0 588.0  576.0 576.0 588.0 

k24 670.2 670.2 729.6  669.6 668.4 683.4 

k25 741.0 741.0 758.7  741.0 741.0 767.1 

k26 642.0 642.0 642.9  642.0 642.0 661.8 

k27 660.0 661.2 663.9  660.0 661.8 662.1 

k28 531.0 548.7 552.9  531.0 544.8 552.9 

k29 807.0 831.3 825.9  807.3 829.8 822.9 

k30 891.0 921.6 951.6  891.0 928.2 937.2 

k31 570.0 641.7 644.7  570.0 645.0 654.9 

k32 597.0 597.3 609.3  597.0 597.3 637.5 

k33 642.0 665.4 688.8  642.9 642.0 677.1 

k34 756.0 793.5 765.9  756.3 783.0 807.0 

k35 690.6 686.7 731.4  688.2 684.0 730.8 

k36 729.0 729.0 729.0  729.0 729.0 729.0 

k37 510.6 513.9 539.7  510.0 513.0 538.8 

k38 647.1 667.5 689.7  640.2 660.0 684.0 

k39 528.6 552.9 555.6  528.3 556.8 566.4 

k40 567.0 598.5 611.1  567.0 590.7 611.4 

k41 593.7 634.2 665.1  588.6 636.3 673.5 

k42 580.5 623.7 683.1  573.0 640.2 647.1 

k43 936.0 918.6 1056.9  915.0 935.7 957.3 

k44 825.9 877.5 832.8  823.2 850.2 864.3 

k45 839.4 843.6 842.7  835.2 842.4 837.6 

k46 835.5 769.8 854.7  806.7 774.6 807.9 

k47 971.7 950.4 983.4  1003.8 918.9 943.8 

k48 801.6 747.9 778.5  788.4 740.1 768.6 

k49 906.0 927.3 963.3  906.3 930.3 960.6 

Mean 641.4 650.0 670.4  639.3 650.2 667.2 

 

that mild perturbations should be applied when the 

considered problem is tackled by the ILS. An additional 

conclusion is that the high computation budgets exhibit 

better performance than the low budgets. This result was 

anticipated since by applying a higher number of local 

search procedures, usually solutions of better quality are 

detected. Overall, the best configuration choice 

combined 𝑝st = 1 with the high computation budget 

scenario achieving a mean objective function value of 

624.2.  

As for the swap heuristic, in Table 4 we again observe 

that lower perturbation steps along with higher 

computation budgets lead to results of higher quality. 

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2019 
ISBN 978-88-85741-27-0; Bottani, Bruzzone, Longo, Merkuryev and Piera Eds.           

67



This outcome is in line with the best configuration choice 

that was identified for the shift heuristic. Specifically, we 

see that using 𝑝st = 1 and the high budget choice, the 

best objective function value for the swap heuristic is 

attained, which is equal to 639.3. Comparing the shift and 

swap heuristic, we find superior the performance of the 

shift heuristic under all considered configurations. This 

can be attributed to the fact that the swap heuristic works 

in a similar way to the employed perturbation 

mechanism. Therefore, there is the risk that the 

perturbation reverts moves that already applied the swap 

heuristic, thereby reducing significantly the exploration 

dynamics of the ILS. 

 

4.2. Stochastic case 

In this section, we provide results for the SFQCSP, 

assuming that the crane productivity rates exhibit 

uncertainty. Our goal is to minimize the expected time 

required to (un)load a vessel from/to the offshore 

platform under different wind conditions. To accomplish 

this, we use the simheuristic framework that employed 

the best ILS variant of the previous experimental phase 

consisting of the shift heuristic and adopting the 

parameter values 𝑝st = 1, 𝑁LS = 101. Regarding the 

simulation component of the framework, we assume a 

maximum sample size of m𝑚𝑎𝑥 = 2 x 104 simulations 

per application of MCS. Additionally, the stopping rule 

presented in Section 3.2.1 is used to terminate the MCS 

when the desired level of precision is attained. To this 

end, two different error threshold values, 𝜇𝜀 ∈
{1 x 10−2, 5 x 10−3} and a significance level of α = 0.95 

are considered.  

To solve the SFQCSP under realistic wind conditions, we 

have gathered real-world wind data and computed their 

impact on crane productivity. Specifically, 

environmental data from years 1979-2017 containing 

hourly average wind speeds at a height of 10m at the 

platform location have been obtained from the DHI 

MetOcean (http://www.metocean-on-demand.com). In 

order to provide accurate computations, the wind speed 

should be measured at the height of 40m (i.e., the crane 

top level) instead of the height provided in the data. 

Furthermore, according to (PIANC 2012), the 

calculations should be based on the 3-second gust speed 

and not on the typical wind speed. Therefore, the 

provided hourly average wind speed is converted to a 3-

second gust speed at the platform location. Following 

both suggestions, the required transformation has been 

performed as follows: 

 

𝑈40 = 𝑈10 x (𝐻10
40 + 𝐹𝑤

𝑔
) = 𝑈10 x 1.45, (4) 

 

where 𝑈10 is the average wind speed at 10m and 𝑈40 is 

the 3-second gust speed at 40m. The transformation from 

10m to 40m, denoted by 𝐻10
40, is computed according to 

the power law relationship (40/10)1/7and is equal to 

1.22. 𝐹𝑤
𝑔

 represents the conversion from the average 

wind speed to the 3-second gust speed and is equal to 

1.23 taking into account that the platform is situated more 

than 20 km away from the coast. 

Table 5: Characteristics of the scenarios regarding the 

wind speed and its impact on crane productivity. 
Sce-

nario 

Wind speed 3-second gust 

speed  

Crane productivity 

rate % 

1 13.34-14.00 20.00-20.99 [80.00, 100.00) 

2 14.01-14.67 21.00-21.97 [60.00, 80.00) 
3 14.68-15.33 22.01-22.99 [40.00, 60.00) 

4 15.34-16.00 23.00-23.99 [20.00, 40.00) 

 

 
Figure 2: Number of simulations per instance for the used 

error threshold values for Scenario 1. 

 

Typically, a 3-second gust speed below 20m/s is assumed 

to enable full crane productivity (100%), while rate 

values exceeding 25m/s force the crane equipment to 

cease its operation (PIANC 2012). In this study, we only 

consider gust speeds between 20 and 24m/s and therefore 

productivity rates between 20% and 100%. This is 

because rates equal to 100% imply a deterministic crane 

scheduling problem while the focus of this section is on 

stochastic crane scheduling challenges. Additionally, we 

consider productivity rates less than 20% as an extreme 

case where crane operations are infeasible, hence 

obviously the crane scheduling problem is not required 

to be assessed under these scenarios. Given these 

assumptions, from the available dataset, we have 

extracted data items that correspond to gust speeds in 

[20.00,24.00), resulting in 12612 data points. To 

compute the crane productivity per data item, we make 

the hypothesis that productivity rates decrease linearly 

with respect to the 3-second gust speeds. To study the 

impact of wind speed variability on crane operations in 

more detail, we divide the total crane productivity 

operation range into disjoint groups resulting in four 

main wind speed/crane productivity scenarios. 

Information per scenario with respect to the wind speed 

at 10m, the corresponding 3-second gust speed at 40m 

along with the corresponding crane productivity rates is 

shown in Table 5. 

Tables 6 and 7 in Appendix A presents the results for the 

SFQCSP using the four scenarios and the error threshold 

value 𝜇𝜀 = 1 x 10−2. Specifically, for each instance, we 

report the best solution of the deterministic version, 𝑐𝑇, 

the best solution for the stochastic version of the 

problem, 𝐸(𝑐𝑇), along with the confidence interval, CI, 
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at significant level α = 0.95. Note that there is only one 

column for the 𝑐𝑇 value as the simheuristic detected the 

same best solution regardless of the employed wind 

speed/crane productivity scenario. This is because the 

wind variability does not affect the solutions of the 

deterministic problem. On the contrary, for each 

scenario, we see that the higher the wind speed, the lower 

the crane productivity rate and thus, the less the expected 

time of the (un)loading process.  

Finally, we experiment with the sample size of the MCS 

for each of the considered error threshold values. 

Indicatively, Figure 2 reports the total number of 

simulations performed by the simheuristic per error 

threshold value regarding Scenario 1. Interestingly, we 

notice that in order to double the level of precision (i.e., 

halve the error threshold), the number of simulations has 

to be increased by about four times. Determining the 

exact trade-off between precision and execution time 

depends significantly on the time frame according to 

which the SFQCSP is required to be solved. 

 

5. CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we studied the Stochastic Floating Quay 

Crane Scheduling Problem in which each crane is 

situated on one module of an offshore platform. 

Moreover, we explicitly took into account that the speed 

of the offshore wind influences the productivity rates of 

the quay cranes. To address the crane scheduling 

challenge, we proposed a simheuristic framework that 

combines the Iterated Local Search algorithm and the 

Monte Carlo Sampling method into a joint collaborative 

scheme. The Iterated Local Search algorithm was used to 

tackle the deterministic version of the problem whereas 

the Monte Carlo Sampling method was employed to 

compute the value of the stochastic objective function. 

Two different local search heuristics, called shift and 

swap heuristic, were incorporated into the Iterated Local 

Search algorithm. Experimental results showed the 

superiority of the shift heuristic under all considered 

configurations. Additionally, we concluded that only 

mild perturbations are required when the particular 

problem is confronted. We have used the developed 

simheuristic to minimize the time required to (un)load a 

vessel from/to the platform under different wind 

speed/crane productivity scenarios. The scenarios were 

generated by using a specialized approach that quantified 

the impact of wind speed on crane productivity rates. 

Future research will involve the application of the 

simheuristic to larger problem instances including a 

higher number of cranes and tasks. Additionally, 

different methods that enhance the efficiency of this 

framework will be proposed and evaluated on 

environmental data considering both wind and wave 

conditions. 

 

ACKNOWLEDGMENTS 

This project has received funding from the European 

Union’s Horizon 2020 research and innovation 

programme under grant agreement No 774253. The 

opinions in this document reflect only the authors’ view 

and in no way reflect the European Commission’s 

opinions. The European Commission is not responsible 

for any use that may be made of the information it 

contains. 

 

REFERENCES 

Al-Dhaheri N., Jebali A., Diabat A., 2016. A simulation-

based Genetic Algorithm approach for the quay 

crane scheduling under uncertainty. Simulation 

Modelling Practice and Theory, 66, 122-138. 

Ata M.Y., 2007. A convergence criterion for the Monte 

Carlo estimates. Simulation Modelling Practice and 

Theory 15 (3), 237-246. 

Bierwirth C., Meisel F., 2009. A fast heuristic for quay 

crane scheduling with interference constraints. 

Journal of Scheduling 12 (4), 345-360.  

Bierwirth C., Meisel F., 2015. A follow-up survey of 

berth allocation and quay crane scheduling 

problems in container terminals. European Journal 

of Operational Research 244 (3), 675-689. 

Chhetri P., Jayatilleke G.B., Gekara V.O., Manzoni A., 

Corbitt B., 2016. Simulating the impact of extreme 

weather events on port operation. European Journal 

of Transport & Infrastructure Research 16 (1), 195-

213.  

Christiansen M., Fagerholt K., Nygreen B., Ronen D., 

2007. Maritime Transportation. In: Barnhart C., 

Laporte G., ed. Transportation, chapter 4, volume 

14 of Handbooks in Operations Research and 

Management Science, Elsevier, 189-284. 

Daganzo C.F., 1989. The crane scheduling problem. 

Transportation Research Part B: Methodological 23 

(3), 159-175. 

Gideonse P., 2018. Conceptual Harbour Design for the 

Transport and Logistics Hub of Space@Sea. 

Technical Report. Delft University of Technology, 

Delft, The Netherlands. 

Gustafsson T., Heidenback C., 2002. Automatic control 

of unmanned cranes at the Pasir Panjang terminal. 

Proceedings of the International Conference on 

Control Applications, volume 1, pp. 180-185, 

September 18-20, Glasgow, Scotland, UK. 

Juan A.A., Barrios B.B., Vallada E., Riera D., Jorba J., 

2014. A simheuristic algorithm for solving the 

permutation flow shop problem with stochastic 

processing times. Simulation Modelling Practice 

and Theory 46, 101-117. 

Juan A.A., Faulin J., Grasman S.E., Rabe M., Figueira 

G., 2015. A review of simheuristics: Extending 

metaheuristics to deal with stochastic combinatorial 

optimization problems. Operations Research 

Perspectives 2, 62-72. 

Kim K.H., Park Y.-M., 2004. A crane scheduling method 

for port container terminals. European Journal of 

Operational Research 156 (3), 752-768. 

Lamas-Pardo M., Iglesias G., Carral L., 2015. A review 

of Very Large Floating Structures (VLFS) for 

coastal and offshore uses. Ocean Engineering 109, 

677-690. 

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2019 
ISBN 978-88-85741-27-0; Bottani, Bruzzone, Longo, Merkuryev and Piera Eds.           

69



Legato P., Mazza R.M., Trunfio R., 2008. Simulation-

based optimization for the quay crane scheduling 

problem. Proceedings of the Winter Simulation 

Conference, pp. 2717-2725, December 7-10, 

Miami, Florida, USA. 

Legato P., Trunfio R., Meisel F., 2012. Modeling and 

solving rich quay crane scheduling problems. 

Computers & Operations Research 39 (9), 2063-

2078. 

Lourenço H.R., Martin O.C., Stützle T., 2003. Iterated 

local search. In: Glover F.W., Kochenberger G.A., 

ed. Handbook of Metaheuristics, Springer, 320-

353. 

Michalak K., Knowles J.D., 2016. Simheuristics for the 

multiobjective nondeterministic firefighter problem 

in a time-constrained setting. Proceedings of the 

European Conference on the Applications of 

Evolutionary Computation, pp. 248-265, March 30-

April 1, Porto, Portugal. 

Monaco M.F., Sammarra M., 2011. Quay crane 

scheduling with time windows, one-way and spatial 

constraints. International Journal of Shipping and 

Transport Logistics 3 (4), 454-474. 

PIANC Working Group 115, 2012. Criteria for the 

(un)loading of the container vessels, Technical 

report. 

Sammarra M., Cordeau J.-F., Laporte G., Monaco M.F., 

2007. A tabu search heuristic for the quay crane 

scheduling problem. Journal of Scheduling 10 (4), 

327-336. 

Shapiro A., 2003. Monte Carlo Sampling Methods. In: 

Ruszczyński A., Shapiro A., ed. Stochastic 

Programming, volume 10 of Handbooks in 

Operations Research and Management Science, 

Elsevier, 353-425. 

Tabernacle J.B., 1995. A study of the changes in 

performance of quayside container cranes. 

Maritime Policy & Management 22 (2), 115-124. 

UNCTAD, 2018. Review of Maritime Transport 2018, 

United Nations Publication. 

van den Bos W., 1995. Wind influence on container 

handling, equipment and stacking. Port Technology 

International Journal, Edition 29. 

Zeng Q., Yang Z., Hu X., 2011. Disruption recovery 

model for berth and quay crane scheduling in 

container terminals. Engineering Optimization 43 

(9), 967-983. 

 

APPENDIX A 

In the Appendix, Tables 6 and 7 present detailed results 

for the SFQCSP under the considered four wind 

speed/crane productivity scenarios. 

 

Table 6: Results for the SFQCSP under Scenario 1 and 

Scenario 2. 

  Scenario 1  Scenario 2 

Inst. 𝑐𝑇 𝐸(𝑐𝑇) CI  𝐸(𝑐𝑇) CI 

k13 453 492.5 [487.6, 497.4]  636.8 [630.5, 643.2] 

k14 546 604.1 [598.0, 610.1]  781.9 [774.1, 789.7] 

k15 513 566.8 [561.1, 572.4]  733.2 [725.9, 740.5] 

k16 312 339.3 [335.9, 342.7]  438.6 [434.2, 443.0] 

k17 453 498.2 [493.3, 503.2]  642.7 [636.3, 649.1] 

k18 375 413.0 [408.9, 417.1]  535.1 [529.8, 540.5] 

k19 552 601.8 [595.8, 607.8]  776.7 [768.9, 784.4] 

k20 399 442.4 [438.0, 446.7]  572.1 [566.4, 577.8] 

k21 465 520.3 [515.1, 525.5]  673.6 [666.9, 680.3] 

k22 540 597.9 [591.9, 603.8]  774.9 [767.2, 782.6] 

k23 576 644.6 [638.2, 651.0]  834.0 [825.7, 842.4] 

k24 666 744.7 [737.3, 752.1]  964.8 [955.2, 974.5] 

k25 741 822.3 [814.1, 830.5]  1067.6 [1056.9, 1078.3] 

k26 642 714.7 [707.6, 721.8]  926.3 [917.1, 935.6] 

k27 660 733.6 [726.3, 741.0]  949.5 [940.0, 958.9] 

k28 531 588.7 [582.8, 594.6]  763.2 [755.6, 770.8] 

k29 807 904.7 [895.7, 913.7]  1170.2 [1158.5, 1181.9] 

k30 891 1003.2 [993.2, 1013.2]  1303.3 [1290.3, 1316.3] 

k31 570 627.7 [621.4, 633.9]  812.5 [804.4, 820.6] 

k32 597 661.0 [654.4, 667.6]  858.1 [849.5, 866.7] 

k33 642 702.2 [695.2, 709.2]  910.8 [901.7, 919.8] 

k34 741 823.1 [814.9, 831.4]  1072.5 [1061.8, 1083.2] 

k35 684 777.0 [769.3, 784.8]  1012.7 [1002.6, 1022.8] 

k36 729 796.6 [788.6, 804.5]  1034.8 [1024.5, 1045.1] 

k37 510 579.0 [573.2, 584.8]  755.3 [747.8, 762.9] 

k38 636 716.5 [709.5, 723.6]  927.0 [917.8, 936.3] 

k39 525 582.7 [576.9, 588.5]  759.0 [751.4, 766.6] 

k40 567 636.8 [630.5, 643.2]  827.1 [818.9, 835.4] 

k41 588 671.9 [665.2, 678.6]  873.5 [864.8, 882.2] 

k42 573 639.7 [633.3, 646.1]  835.5 [827.1, 843.8] 

k43 876 993.3 [983.4, 1003.2]  1298.2 [1285.3, 1311.1] 

k44 822 936.5 [927.2, 945.8]  1224.1 [1212.0, 1236.3] 

k45 834 954.8 [945.3, 964.3]  1244.5 [1232.1, 1256.9] 

k46 705 795.7 [787.8, 803.6]  1033.4 [1023.0, 1043.7] 

k47 792 901.9 [892.9, 910.8]  1178.1 [1166.3, 1189.8] 

k48 666 731.8 [724.5, 739.0]  948.5 [939.0, 957.9] 

k49 894 1016.8 [1006.7, 1026.9]  1321.5 [1308.4, 1334.7] 

 

Table 7: Results for the SFQCSP under Scenario 3 and 

Scenario 4. 

  Scenario 3  Scenario 4 

Inst. 𝑐𝑇 𝐸(𝑐𝑇) CI  𝐸(𝑐𝑇) CI 

k13 453 891.7 [900.9, 919.1]  1537.9 [1522.5, 1553.2] 

k14 546 1110.5 [744.9, 760.0]  1946.9 [1927.5, 1966.4] 

k15 513 1038.3 [1081.2, 1103.1]  1822.8 [1804.5, 1841.0] 

k16 312 613.9 [796.9, 813.0]  1066.7 [1056.0, 1077.4] 

k17 453 910.0 [947.6, 966.7]  1586.7 [1570.8, 1602.6] 

k18 375 752.5 [1081.7, 1103.5]  1318.2 [1305.0, 1331.4] 

k19 552 1092.2 [1159.6, 1183.0]  1907.9 [1888.9, 1927.0] 

k20 399 805.0 [1350.4, 1377.6]  1414.5 [1400.3, 1428.6] 

k21 465 957.2 [1487.1, 1517.1]  1676.1 [1659.4, 1692.9] 

k22 540 1092.6 [1295.7, 1321.8]  1919.4 [1900.2, 1938.6] 

k23 576 1171.3 [1324.4, 1351.1]  2051.8 [2031.3, 2072.3] 

k24 666 1364.0 [1063.4, 1084.8]  2377.4 [2353.6, 2401.1] 

k25 741 1502.1 [1636.7, 1669.7]  2631.7 [2605.4, 2658.0] 

k26 642 1308.7 [1823.4, 1860.2]  2290.5 [2267.6, 2313.4] 

k27 660 1337.7 [1130.4, 1153.2]  2348.7 [2325.2, 2372.2] 
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k28 531 1074.1 [1196.2, 1220.3]  1863.0 [1844.4, 1881.7] 

k29 807 1653.2 [1276.1, 1301.9]  2899.2 [2870.2, 2928.2] 

k30 891 1841.8 [1513.2, 1543.7]  3231.0 [3198.7, 3263.3] 

k31 570 1141.8 [1434.1, 1463.0]  1991.5 [1971.6, 2011.4] 

k32 597 1208.3 [1444.1, 1473.3]  2117.7 [2096.5, 2138.9] 

k33 642 1289.0 [1064.8, 1086.3]  2303.1 [2280.1, 2326.1] 

k34 741 1528.5 [1300.3, 1326.5]  2735.9 [2708.5, 2763.2] 

k35 684 1448.6 [1060.7, 1082.1]  2599.7 [2573.7, 2625.7] 

k36 729 1458.7 [1167.0, 1190.5]  2610.7 [2584.6, 2636.8] 

k37 510 1075.5 [1233.7, 1258.6]  1926.8 [1907.5, 1946.1] 

k38 636 1313.4 [1169.8, 1193.4]  2324.4 [2301.1, 2347.6] 

k39 525 1071.4 [1826.9, 1863.7]  1914.2 [1895.0, 1933.3] 

k40 567 1178.7 [1720.1, 1754.8]  2119.6 [2098.4, 2140.7] 

k41 588 1246.1 [1747.7, 1782.9]  2234.7 [2212.4, 2257.1] 

k42 573 1181.6 [1453.4, 1482.8]  2124.5 [2103.2, 2145.7] 

k43 876 1845.3 [1660.4, 1693.9]  3321.5 [3288.3, 3354.7] 

k44 822 1737.5 [1332.0, 1358.8]  3115.8 [3084.7, 3146.9] 

k45 834 1765.3 [1874.2, 1912.0]  3164.8 [3133.2, 3196.4] 

k46 705 1468.1 [900.9, 919.1]  2621.2 [2595.0, 2647.4] 

k47 792 1677.2 [744.9, 760.0]  3018.2 [2988.0, 3048.4] 

k48 666 1345.4 [1081.2, 1103.1]  2400.6 [2376.6, 2424.6] 

k49 894 1893.1 [796.9, 813.0]  3384.4 [3350.5, 3418.2] 
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