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ABSTRACT

Given known control inputs and real sensor outputs or
simulated measurements, the paper shows that numeri-
cal values of unknown parameter degradation functions
can be obtained by evaluating equations derived from
a bicausal diagnostic bond graph that are not analyti-
cal redundancy relations. Inspection of causal paths be-
forehand enables to decide whether potential parametric
faults can be isolated with a number of sensors in given
locations. The proposed approach can be applied in the
case of multiple isolated simultaneous parametric faults.
Numerical values of degradation functions can be com-
puted concurrently to the constant monitoring of a sys-
tem and the measurement of signals. Repeatedly project-
ing the time evolution of a degradation function into the
future based on values in a sliding time window enable
to obtain a sequence of remaining useful life estimates.
The novel proposed combined bond graph-model-based,
data-based approach is verified by an offline simulation
study of a typical power electronic circuit.

Keywords: Sensor placement and fault isolation, a pri-
ori unknown parameter degradation functions, bicausal
Bond Graphs, failure prognosis, remaining useful life.

1. INTRODUCTION

Nowadays, more and more mechatronic engineering sys-
tems are equipped with sensors and embedded systems so
that they can process measured information, detect and
isolate emerging faults and may reconfigure their control
themselves. Beyond safety and reliability of safety criti-
cal engineering systems and processes, these capabilities
are of significant importance for supervision, automation
and condition based maintenance of industrial processes,
for an intelligent communication and cooperation of net-
worked robots, or for all kinds of emerging autonomous
intelligent operating mobile systems such as unmanned
aerial vehicles, or for cyber physical systems.

Accordingly, fault detection and isolation (FDI) has
been a major subject in research and in various applica-
tion fields. Approaches to FDI are commonly based on
either measured data or on models In addition, recently
also a combination of model-based and data-based ap-
proaches has been proposed Jha (2015).

With regard to fault isolation a question is how many
sensors are to be placed in which locations in order to
isolate a maximum of potentially faulty system compo-

nents. This is still a subject of ongoing research. Various
approaches to the sensor placement problem based on bi-
partite graphs Frisk et al (2009), on digraphs Alem and
Benazzouz (2013), or on bond graphs Djeziri et al (2009);
Benmoussa et al (2014); Chi and Wang (2015); Borutzky
(2018b) have been reported in the literature.

Once, a fault has been diagnosed, another question
is how long a system may safely continue its operation
despite the presence of an incipient fault before the in-
creasing affect of the fault on the dynamic system be-
haviour may lead to a component or even a system fail-
ure. Clearly, constant monitoring of the health of a sys-
tem and a repeated prediction of the remaining useful life
(RUL), i.e. failure prognosis is of technical and economi-
cal importance. Online failure prognosis is also a subject
of ongoing research.

To anticipate the RUL as of the current time instant, it
is necessary to know the degradation behaviour of a fault
over time. To that end one may try to develop a model
of the degradation process starting from physical princi-
ples. Difficulties, however, may be that the degradation
process is not fully understood or that not all needed pa-
rameters of a degradation model can be determined.

Other options may be to obtain a degradation model
from offline accelerated life tests Escobar and Meeker
(2006) and to use the results in online health monitoring
for the prediction of the RUL Medjaher, K. and Zerhouni,
N. (2013), or to assume that a potential degradation func-
tion candidate is a member of a certain class of functions
and to adapt the unknown parameters of the function by
curve fitting. As measured signals carry noise, a RUL has
to be considered a stochastic quantity Jha (2015).

Moreover, for systems operating in various modes, the
degradation behaviour may change from mode to mode
making it necessary to change to another class of poten-
tial degradation functions (Borutzky, 2016, Chap. 6).

In order to avoid the disadvantages pertaining to the
development of a degradation model from physical prin-
ciples and as well to curve fitting based on measurements,
Borutzky recently proposed to estimate the numerical
values of an unknown degradation function from the time
series of analytical redundancy relations (ARRs) derived
from a diagnostic bond graph (DBG) Borutzky (2018a).
The approach uses a first stage and a second stage DBG.
An evaluation of ARRs obtained from a DBG with nomi-
nal parameters and inputs from the real faulty system or a
model of it must result in some residuals significantly dif-
ferent from zero. A second stage DBG accounts for the
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unknown degradation function of a component parame-
ter. Accordingly, ARRs derived from the second stage
DBG must be close to zero. The use of ARR residuals
from the first stage DBG in the ARRs of the second stage
DBG leads to an equation that determines the unknown
degradation function.

A different approach recently reported in Prakash et al
(2018) also evaluates ARRs but obtains degradation data
by repeated updating a faulty parameter. Once a faulty
parameter is identified, its value replaces the current pa-
rameter value which means that the model is adapted to
the current faulty situation. Accordingly, an evaluation
of the ARR sensitive to fault under consideration should
provide a residual close to zero. However, as the mag-
nitude of the fault progressively increases with time, a
repeated evaluation of the ARR after some time step will
result in new residual. Identification of the new faulty
parameter value gives another estimated value of the un-
known degradation function.

This paper continues the work in Borutzky (2018a)
by showing that a more direct approach based on a sin-
gle bicausal DBG can provide the same results and does
not need ARRs. Determining the numerical values of a
degradation function means to evaluate the magnitude of
a fault for each time instant. Clearly, to that end, the
faulty component must have been isolated. Therefore,
in the following, first, the placement of sensors aiming
at a fault isolation is addressed. It is assumed that the
observed faulty system behaviour is due to a component
parameter that has become time-varying as of some time
instant.

Given known system inputs and either measurements
from a real system or simulated measurements, the objec-
tive of the single bicausal DBG based approach proposed
in this paper is to numerically determine an unknown pa-
rameter degradation function by estimating the numerical
values of a faulty parameter for each time instant that can
be used in data-based failure prognosis. As in Prakash
et al (2018), the numerical values of an unknown degra-
dation function are determined over a sliding time win-
dow of fixed size. For each time window, the data-based
part of the approach identifies a mathematical function
and projects it into the future to obtain an estimate of the
current RUL. As a result, a sequence of RUL estimates is
obtained with values that tend to zero as the considered
faulty component reaches its end of life (EOL).

The approach proposed in this paper is explained by
means of a typical power electronic circuit. Results are
verified by an offline simulation study. The presentation
continues by addressing the estimation of the RUL and
concludes with a discussion of some aspects that may be
subject of further considerations.

2. SENSOR PLACEMENT AND FAULT ISOLA-
TION

In Borutzky (2018b), Borutzky proposes a graphical ap-
proach to the isolation of parametric component faults
that aims at avoiding the limitations of an inspection of
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Figure 1: Circuit schematic
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Figure 2: BG of the circuit in Fig. 1

a structural fault signature matrix (FSM) and the compu-
tational costs of numerical methods. Briefly, the idea is
to start from a DBG of a system with given sensors, con-
sider causal paths and to add repeatedly detectors to the
DBG so that a maximum of disjoint causal paths from
detectors to possibly faulty elements is obtained. If are
there causal paths from different detectors to a potentially
faulty element, the set of these non-disjoint causal paths
must be unique. A parameter fault in these elements can
be isolated as can be verified by a FSM. As it is known, a
structural FSM can be directly obtained from a DBG by
following causal paths. As there may be technical limi-
tations as to where sensors can be placed, a detector may
not be attached to some junctions in the DBG. Moreover,
some parameter faults cannot be isolated without insert-
ing additional junctions and attaching a detector to it. For
instance, a flow sensor is not enough to isolate the param-
eters of electrical elements connected in series.

The issue of fault isolation and sensor placement is il-
lustrated by means of a small electrical circuit that has
also been considered by Frisk et. al. in Frisk et al (2009).

The circuit schematic with two non-faulty flow sensors
in Fig. 1 is easily converted into the BG in Fig. 2. The
model is of order one as the capacitor must take deriva-
tive causality. As there is a causal path from the inductor
I : L to the detector Df : y2 and since no storage element
remains in integral causality when preferred derivative
causality is assigned, the circuit is completely state ob-
servable with the sensor Df : y2. However, as to FDI, even
if the voltage source Se : E and the flow sensor Df : y2
are assumed to be faultless, one sensor is certainly not
enough to isolate more than one parametric fault. That
is, additional real or virtual sensors are needed. For the
two output variables, y1,y2, the following two equations
can be derived from the BG in Fig. 2.

y1 = − R2

R1 +R2
iL +

1
R1 +R2

E +C
d
dt

E (1)

y2 = iL (2)
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Figure 3: DBG of the circuit in Fig. 1

Table 1: Structural fault signature matrix of the circuit in
Fig. 1 with two current sensors

Element r′1 r′2 Db Ib

Se : E 1 0 1 0

C : C 1 1 1 0

I : L 0 1 1 1©
R : R1 1 0 1 0

R : R2 1 1 1 0

Given the input E and the state variable iL, (1) may be
considered the equation of a virtual sensor that provides
the output y1. The question is, how many sensors are
needed to isolate a maximum of number of potentially
faulty element parameters.

Now, for FDI, the circuit schematic in Fig. 1 is trans-
formed into the diagnostic bond graph (DBG) in Fig. 3
with detectors in inverted causality and storage elements
in preferred derivative causality. As can be seen, there
are two non-disjoint causal paths from detector Df : y1
to resistors R : R1 and R : R2. That is, these parameters
cannot be isolated. If one of the two resistors becomes
faulty, the degradation of its resistance cannot be com-
puted given the two sensors.

As there are two sensors in the circuit, two ARRs can
be set up from the DBG in Fig. 3.

ARR1 : r′1 := r1 +(R1 +R2)Cṙ1

= E +(R1 +R2)CĖ− (R1 +R2)y1 +R2y2 (3)
ARR1 : r′2 := r2−R2Cṙ1

= R2(y1− y2)−R2CĖ−Lẏ2 (4)

Accordingly, the structural FSM in Table 1 displays
which element parameters contribute to which ARR. As
the entry ’1’ highlighted in blue in the last column of Ta-
ble 1 indicates, only a potentially faulty inductor I : L can
be structurally isolated given the two flow sensors.

Following the graphical procedure proposed in
Borutzky (2018b), attaching an additional flow detector
Df : y3 to junction 12 (Fig. 4) yields disjoint causal paths
from detectors to elements except the two causal paths
from detectors Df : y2 and Df : y3 to the resistor R : R2.
They indicate that R2 contributes to the two ARR resid-
uals r2,r3 giving rise to an element fault signature that
is unique. As a result, all possibly faulty elements can
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Figure 4: DBG of the circuit in Fig. 1 with an additional
flow detector Df : y3

Table 2: Structural fault signature matrix of the DBG in
Fig. 3 with detectors Df : y1, Df : y2 and Df : y3.

Element r1 r2 r′3 Db Ib

Se : E 1 0 0 1 1

C : C 1 0 1 1 1

I : L 0 1 0 1 1

R : R1 0 0 1 1 1

R : R2 0 1 1 1 1

be isolated given these three sensors1. The result of this
bond graph based procedure is confirmed by the struc-
tural FSM in Table 2 and is in accordance with the result
obtained by the bipartite approach in Frisk et al (2009).

Depending on the structure of a DBG, attaching ad-
ditional sensors to its junctions in certain places can not
always increase the number of disjoint causal paths from
detectors to potentially faulty elements and thus increase
the number of parametric faults that can be structurally
isolated. As an example, consider the DBG model of
a DC motor that moves a rotational mechanical load
against an external torque T displayed in Fig. 5.

With the given flow detectors Df : ia for the armature
current and Df : ωl for the angular load velocity none of
the potentially faulty parameters can be isolated. The re-
sult is only partially improved by adding a flow detector
Df : ωm to junction 12 for the angular velocity of the mo-
tor connected to the load by a shaft with some flexibility
C : Cs. The added flow detector enforces integral causal-
ity at the C-element C : Cs so that the ARR obtained by
the sum of flows at junction 12 must be differentiated to
get rid of the initial condition of the integration. Nev-
ertheless, only two potentially faulty parameters can be
isolated as indicated in the FSM of Table 3

As the voltage supply of the motor, the resistance Ra
and the inductance La of the armature are in series, one
flow detector for the current through these elements is not
enough to isolate their parameters. Additional junctions
(02,03) with detectors attached to them must be inserted
into the DBG as shown in Fig. 6

So far, sensors have been assumed to be faultless. If
this is not the case, a faulty sensor can be modelled by a

1Note, as Df : y3 entails integral causality on C : C the ARR for r3 is
differentiated with respect to time to get rid of the initial condition.
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Figure 5: DBG of a DC motor drive with two flow sensors Df : ia and Df : ωl (Borutzky (2018b))

Table 3: FSM of the DBG in Fig. 5 with an additional
flow detector Df : ωm

Element r1 r2 r3 Db Ib

Se : E 1 0 0 1 0

MSe : T 0 1 0 1 0

R : Ra 1 0 0 1 0

I : La 1 0 0 1 0

GY : k 1 0 1 1 1©
R : Rm 0 0 0 1 0

I : Jm 0 0 0 1 0

C : Cs 0 1 1 1 1©
R : R 0 1 0 1 0

I : Jl 0 1 0 1 0

detector of the faultless signal and a modulated sink that
provides the faulty signal component. Clearly, a faulty
sensor cannot be used for detection and isolation of para-
metric faults of system components. Therefore, another
non-faulty sensor is needed that enables to isolate the
sensor fault. For illustration, consider the small passive
network in Fig. 7 with a faulty sensor for the inductor cur-
rent. The DBG in Fig. 8 reflects that the sensor measures
a faulty inductor current ĩL = iL +∆iL. As can be seen,
there is a direct causal path p1 from the additional detec-
tor De : us to the modulated sink MSf : ∆iL and another
path p2 to the inductor I : L which means that the sen-
sor fault ∆iL affects ARR residuals r2 and r3. Moreover,
there is an indirect causal path p3 from detector Df : y1
via R : R2 to the sink MSf : ∆iL. That is, ∆iL also con-
tributes to ARR1, hence, all three ARRs.

Moreover, there are the following direct causal paths

p4: Df : y1→ 11→ Se : E
p5: Df : y1→ 11→ 01→ R : R2
p6: Df : iL→ 02→ 12→ 01→ R : R2

The last two paths indicate that R2 contributes to residu-
als r1 and r2. As a result, the sensor fault ∆iL can be struc-
turally isolated. This can be verified by reading out the
following ARRs from the DBG in Fig. 8 and by captur-
ing their structural parameter dependencies in the FSM
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Figure 6: DBG fragment with inserted junctions 02 and
03 and attached effort detectors for further isolation of
element parameters
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Figure 7: Circuit with a faulty sensor for the inductor
current

in Table 4.

ARR1 : r1 = E−R2(y1− (iL +∆iL))−R1y1 (5)
ARR2 : r2 = R2(y1− (iL +∆iL))−us (6)

ARR3 : ṙ3 =
d
dt

iL +
d
dt

∆iL−
1
L

us (7)

Potentially faulty elements Se : E and R : R1 cannot be
isolated. There are direct causal paths to these elements
from detector Df : y1 but no causal paths from the other
detectors.

3. NUMERICAL DETERMINATION OF UN-
KNOWN DEGRADATION FUNCTIONS

Parametric degradation means that performance degrada-
tion of an engineering system is due to the fact that some
of its parameters increasingly deviate from their nominal
values with time following a function of which an exact
analytical expression is mostly unknown.
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Figure 8: DBG of the circuit in Fig. 7

Table 4: Fault signature matrix of the DBG in Fig. 8

Element r1 r2 r′3 Db Ib

Se : E 1 0 0 1 0

R : R1 1 0 0 1 0

R : R2 1 1 0 1 1

I : L 0 0 1 1 1

MSf : ∆iL 1 1 1 1 1

One way to approximate a degradation trend, may be
to develop a model based on physical laws. Problems,
however, may be that the physics of a degradation pro-
cess are not well understood or that values for some pa-
rameters of a degradation model are not available.

Alternatively, one may select a member of an appropri-
ate class of potential degradation functions in analytical
form and adapt its unknown parameters by curve fitting.

Another option may be to consider the determination
of numerical values of an unknown degradation function
as a parameter estimation problem.

To that end, a bicausal bond graph is used in this paper.
Bicausal BGs were introduced by Gawthrop Gawthrop
(1995) They extend the concept of computational causal-
ity by allowing that both co-variables, effort and flow of
a bond may be inputs into a power port of an element.
Accordingly, they may be used for parameter estima-
tion and thus can be used for setting up an equation that
determines the degradation function of a faulty element
parameter Θ(t) at time instant t. Bicausal bond graphs
have been used for FDI, e.g. in Samantaray and Ghoshal
(2008). However, to the best of the author’s knowledge,
they haven’t been used in online failure prognosis for the
determination of numerical values of an unknown degra-
dation function as proposed in this article. The approach
is explained by means of a small power electronic circuit
and verified by an offline simulation study in the next sec-
tion.

3.1 A power electronic example

Consider the circuit schematic of a boost converter in
Fig.9. It is assumed that the converter used, e.g. in
power generation plants, operates in continuous conduc-
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Figure 9: Circuit schematic of a boost converter
(Borutzky (2018a))
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Figure 10: DBG of the boost converter in Fig. 9
(Borutzky (2018a))

tion mode (CCM) with a sensor for the inductor current
iL and a sensor of the output voltage V . A fault in this
system component may lead to a failure in a power dis-
tribution system or to a degradation of its performance.

If the MOSFET transistor and the diode are modelled
as two conversely commutating ideal switches Sw : si,
i = 1,2, then the circuit immediately transforms into the
DBG in Fig. 10. If the small equivalent series resistance,
RC, of the capacitor is neglected and if variables are av-
eraged over the switching period, then the circuit may be
presented by the DBG in Fig. 11, in which d denotes the
duty ratio. From the DBG in Fig. 11, the following two
ARRs are easily derived.

ARR1 : r1 = E−RL−L
d
dt

ĩL− (1−d)Ṽ (8)

ARR2 : r2 = (1−d)ĩL−C
d
dt

Ṽ − 1
R

Ṽ (9)

Their structural dependencies from element parameters
is represented by the FSM in Table 5. As can be seen, all
parametric faults can be detected by means of the two
sensors but none can be isolated apart from the faulty
duty ratio d.

In the following, two general cases are considered il-
lustrated by means of the small boost converter circuit.
Firstly, it is assumed that the parameter of a resistive el-
ement is degrading with time. The other scenario is that
the parameter of a storage elements progressively devi-
ates from its nominal value. For both cases it is shown
how the values of the respective unknown degradation
function can be estimated by means of known inputs and
measured values or simulated measurements.
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Table 5: Fault signature matrix of the DBG in Fig. 11

Element r1 r2 Db Ib

Se : E 1 0 1 0

R : RL 1 0 1 0

I : L 1 0 1 0

TF : d 1 1 1 1©
C : C 0 1 1 0

R : R 0 1 1 0

3.2 Degradation function of a resistor

Assume that by means of additional sensors the cause of
an abnormal dynamic behaviour has been isolated and
is attributed to a resistance R that is increasingly devi-
ating from its nominal value Rn with time, i.e. R(t) =
Rn +ΦR(t). Given monitored measurements, the task is
to determine the time-varying resistance R(t). Accord-
ingly, the bond attached to the port of the R-element is
replaced by a bicausal bond as depicted in Fig. 12. As
can be seen from the bicausal DBG in Fig. 12, there is a
causal path from the flow detector Df : ĩL and another one
from the effort detector De : Ṽ to the power port of the
R-element. That is, both port variables are determined
by real measurements or simulated data provided by sen-
sors into the DBG model so that the time evolution of the
possibly nonlinear resistance R(t) = Rn(t) +ΦR(t), i.e.
numerical values of the degradation function ΦR(t) can
be computed. From the bicausal DBG, one obtains

Ṽ = R(t)[(1−d)ĩL−Cn
˙̃V ] = [Rn +ΦR][(1−d)ĩL−Cn

˙̃V ]

= Rn[(1−d)ĩL−Cn
˙̃V ]+ΦR[(1−d)ĩL−Cn

˙̃V ] (10)
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Figure 12: Averaged bicausal DBG of the boost converter
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Figure 13: Averaged bicausal DBG of the boost converter

and as a result an implicit algebraic equation for the un-
known degradation function ΦR(t).

ΦR(t)[(1−d)ĩL−Cn
˙̃V ] =−Rn [(1−d)ĩL−Cn

˙̃V − Ṽ
Rn

]︸ ︷︷ ︸
=: r1

2

(11)

or

(Ṽ +Rnr1
2)ΦR(t) = −R2

nr1
2 (12)

Equation (12) is identical to (21) in Borutzky (2018a), in
which r1

2 denotes an ARR residual derived from the DBG
of the first stage.

3.3 Degradation function of a storage element

In the bicausal DBG of Fig. 13, the bond attached to the
power port of the C-element has also been turned into a
bicausal bond. As a result, there are causal paths from
the two detectors to the C-port so that the numerical val-
ues of a decaying capacitance C(t) could be determined.
However, these causal paths are not disjoint from the
ones to the R-port so that it cannot be decided whether
an abnormal dynamic system behaviour is caused by a
degradation of the resistance R or of the capacitance C
which is also expressed by the FSM in Table 5. This
is not surprising, because both elements are in parallel,
the voltage drop across both elements is the same. As
addressed in Borutzky (2018b), another junction with an
additional detector attached is to be inserted for isola-
tion if both elements are faulty. Therefore, the following
case assumes that only the capacitance, which may be
nonlinear, follows an unknown degradation function, i.e.
C(t) = Cn(t)+ΦC(t). Observing the causal paths from
the detectors to the C-element, the following implicit dif-
ferential equation for the degradation function ΦC(t) can
be obtained from the DBG in Fig. 13.

d
dt
(ΦCṼ ) = (1−d)ĩL−

Ṽ
Rn
− d

dt
(CnṼ )︸ ︷︷ ︸

r1
2

(13)

or

ΦC(t)Ṽ (t) =
∫ t

t f2

r1
2(τ)dτ +ΦC(t f2)Ṽ (t f2) (14)
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where t f2 denotes the time instant when the incipient fault
exceeds an (adaptive) threshold and thus is detected. That
is, ΦC(t) 6= 0 for t > t f2 . Below that threshold the value
of the capacitance may vary. However, a robust fault de-
tection neglects small deviations from nominal parameter
values in order to avoid false alarms.

Equation (14) equals the result (29) in Borutzky
(2018a) obtained by an approach with two diagnostic
bond graphs.

Finally, as can be seen from the bicausal DBG in
Fig. 13, there are another two causal paths from the de-
tectors to the inductor with a faulty inductance L(t) =
Ln(t)+ΦL(t). The causal path from the voltage detector
to the inductor is not disjoint from the causal path to the
resistor R : R and the one to the capacitor. That is, these
parametric faults cannot be isolated in accordance to the
FSM in Table 5. If it is only the inductor that has become
faulty as of a time instant t f1 , then similar to the com-
putation of ΦC(t) above, one obtains for the unknown
degradation function ΦL(t) from the bicausal DBG

d
dt
(ΦL ĩL) = E−RLn ĩL−

d
dt
(Ln ĩL)− (1−d)Ṽ︸ ︷︷ ︸

=: r1
1

(15)

or

ΦL(t)ĩL(t) =
∫ t

t f1

r1
1(τ)dτ +ΦL(t f1)ĩL(t f1) (16)

where r1
1 equals a first stage DBG ARR residual obtained

by the two DBGs approach in Borutzky (2018a). The
integration in (14), (16) may be performed by means of
the trapezoidal rule.

4. OFFLINE SIMULATION STUDY

In the following, the above numerical determination of
a capacitance degradation shall be verified in an offline
simulation. That is, real measurements are replaced by
simulated ones obtained from a BG model of the faulty
circuit. Capacitor leakage is a typical fault. In Kulkarni
et al (2010), it is reported that electrolytic capacitors in
power electronic systems have a higher failure rate than
other system components. In this study, it is assumed that
the decay of the capacitance is exponentially with time
according to the function

C(t) =
{

Cn t < t0
1
5Cn +

4
5Cne−λ (t−t0) t ≥ t0

(17)

That is, as of time instant t0 the capacitance reduces ex-
ponentially with t → ∞ to one fifth of its nominal value
Cn.

The objective of the simulation is to recover this degra-
dation from available ‘measured’ data ĩL and Ṽ provided
by a model with variables averaged over the switching
period. Although averaging results in some smoothing,
measurement noise is taken into account by adding 1%
Gaussian noise to the output signals of the BG model. In
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Figure 14: Effect of the capacitor degradation as of
t f = 0.005s on the inductor current ĩL and the capacitor
voltage Ṽ
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and its derivative dtVnoisefilt

a bicausal DBG, measurement uncertainties can be rep-
resented by modulated sinks (cf. Fig. 8).

The simulation performed by the free software GNU
Octave 4.4.1 uses the parameters given in Table 6. The
effect of the capacitance degradation on the inductor cur-
rent ĩL and the capacitor voltage Ṽ is displayed in Fig. 14
in which the tilde is substituted by the letter t prefixing
the variable name. Simulated noisy measurements are
obtained by means of the Octave function randn().

tV = tV + 0.01*tV .* randn(linspace(tV) (18)

The noisy signals have been smoothed by a Savitzky-
Golay filter Savitzky, A. and Golay, M.J.E. (1964) (Oc-
tave function sgolayfilt()). In (11), the derivative of
the simulated measurement Ṽ is needed. Differentiation
and smoothing has also been carried out by a Savitzky-
Golay filter. The result is displayed in Fig. 15.

Fig. 16 finally displays the recovered decay of the ca-
pacitance rC(t).

As can be seen, the time evolution of the recovered
capacitance rC(t) is sufficiently close to the decay of
the capacitance C(t) deliberately introduced into the be-
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Table 6: Parameters of the averaged DBG model in Fig. 11

Parameter Value Units Meaning
E 12.0 V Voltage supply
L 1.0 mH Inductance
RLn 0.1 Ω Resistance of the coil
Cn 500 µF Nominal capacitance
Rn 5.0 Ω Nominal load resistance
Ts 10−3 s Switching time period
d 0.45 – Duty ratio
t f 0.005 s Capacitance starts decline
λ 500 s−1 Rate of decline
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Figure 16: Recovered capacitance rC(t), rCnoise(t)

havioural model of the circuit.

5. REMAINING USEFUL LIFE ESTIMATION

As explained and illustrated in Section 3, equations for
unknown parameter degradation functions for resistive as
well as storage elements can be directly derived from a
bicausal diagnostic bond graph by following causal paths
from sources and detectors in inverted causality to the
port of a faulty element. That is, inputs to these equations
are only known control inputs and measurements. Nu-
merical values of a parameter degradation function can
be computed online concurrently to the monitoring of the
health of a real system and the constant measurement of
signals. As soon as n measured values of each needed
signal are available and stored in a buffer, the time evo-
lution of a faulty parameter Θ(t) can be approximated up
to a time instant t and can be projected into the future to
see when it would intersect with a failure threshold.

5.1 Data-driven failure prognosis

Once computed numerical values of an unknown func-
tion of the degradation of parameter Θi are available,
they may be treated like degradation data of a feature ex-
tracted from measurement data. Direct measurement of
degradation is often not possible without being invasive

or destructive. The computation of a time-series of degra-
dation data by an evaluation of equations derived from a
bicausal BG can be considered the data acquisition phase.

Given n available degradation data ΦΘ(tk
i ), i = 1, . . . ,n

obtained from real measurements or simulated measure-
ments in a sliding time window wk that are stored in
buffer of fixed size, a number of basic mathematical mod-
els, i.e linear, exponential, or power models with param-
eters to be determined may be tested to see which one fits
best the data in current window wk. This task of learning
a mathematical model can be carried out e.g. by a com-
mercial software such as the Matlab Predictive Toolbox
The Mathworks (n.d.) and can be performed in parallel
on a multiprocessor, multicore computer. As an evalua-
tion criterion for the best fit, the root mean square error
(RSME) may be used. The degradation function ΦΘ(t)
found can then be used to determine a time point tk

f at
which the time evolution of the faulty parameter Θ(t) in-
tersects with a given failure level threshold.

The time span from the current time tk
c (current age of

the system) to the time instant tk
f where the time evolution

of the parameter Θ(t) obtained from degradation data in
the kth window wk intersects with a failure level thresh-
old (end of life, EOL) gives an estimate of the remaining
useful life RULk.

RULk := tk
f − tk

c (19)

With progressing time new degradation values of a pa-
rameter Θi become available while older values drop out
of the buffer. For a new time window wk, the two steps,
i.e. the determination of the best fit degradation model
and its extrapolation are repeated.

As time has advanced, i.e. the system has become
older, that is, tc takes a new value and the intersection
with the failure level threshold gives a new time to fail-
ure value. As a result, one obtains a new value for the
RUL. Repeating these steps while time is progressing re-
sults in a sequence of k RUL estimates RULk(Θi) which
ultimately converge to zero as a component reaches its
EOL. This two step prognosis procedure consisting of
a regression analysis of the degradation data in a win-
dow and an extrapolation that provides an estimate of the
time to failure can be carried out simultaneously for mul-
tiple faulty components and in parallel on a multicore,
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multiprocessor computer. The global system-level RUL
is then the infimum of all component RULs. An advan-
tage of a repeated identification of a mathematical model
for the degradation is that in case of a hybrid model for
each system mode of operation a possibly different rate
of degradation can be taken into account. In systems rep-
resented by a hybrid model, degradation of a component
in ON mode may stop when the component switches into
OFF mode. An example may be the mass flow through
an increasingly contaminated valve. As long as the valve
is open, its discharge coefficient, cd , decreases with time.
Clearly, when the valve is switched off, when this system
component becomes inactive, then the last value of the
discharge coefficient before closure is retained, degra-
dation is stopped as long as the valve is in OFF mode,
i.e. the decline of the time evolution cd(t) becomes zero.
That is, extrapolating the time evolution of the faulty pa-
rameter from the current sliding window does provide
no RUL estimate. In that system mode, the system be-
haviour is not affected by the faulty valve and nothing
can be said about the RUL.

The numerical determination of a degradation function
ΦΘ(t) and the projection of Θ(t) into the future requires
a sufficient number of degradation data in the current
window wk in order to accurately identify the parameter
of a potential degradation model. The amount of avail-
able degradation data, i.e. the size of the sliding window,
affects the uncertainty in the values of the degradation
model parameters and has an effect on the estimation of
the time to failure. Software such as Weilbull++ can com-
pute upper and lower bounds for the time to failure with a
certain confidence level. In order to meet given accuracy
requirements for the parameters of the degradation model
to be fitted, the size of the sliding window may vary. The
boundaries for the time to failure become more narrow
as the sliding time window moves on, i.e. the prediction
of the time to failure becomes more accurate as a faulty
component approches its EOL.

In the case of the capacitance degradation considered
in Section 4, fitting of degradation data in each window
gives the same exponential function C(t) and its intersec-
tion with a failure threshold level Ccrit the same time to
failure t f . Let α,β ,γ be the identified parameters of the
exponential function ΦC(t) fitting the degradation data in
a window. Then the time to failure t f is determined by
the condition

C(t f ) = αCn +βCne−γ(t f−t0) = Ccrit (20)

Solving for t f gives

t f = t0−
1
γ

(
− lnβ + ln

(
Ccrit

Cn
−α

))
(21)

Equation 21 indicates that the time to failure and the
RUL, RUL(C, t) := t f − t depend on the fitting param-
eters. The true RUL is obtained for α = 1/5, β = 4/5
and γ = 500. These parameters and Ccrit = 2/5 yield
t f = 7.777ms. Fig. 17 depicts the exact RUL.

Figure 17: RUL of the decaying capacitance

5.2 Uncertainties in failure prognosis

There are some inherit uncertainties with the proposed
non-residual based approach to failure prognosis.

First, the bicausal BG from which equations for unknown
degradation functions are derived relies on modelling as-
sumptions (model uncertainty).

Entries into the derived equations besides known con-
trol inputs are measurements that carry noise.

As the numerical computation of time-series degrada-
tion data is based on measurements, the parameters of a
potential degradation function are to be considered ran-
dom parameters for which a probability density function
(pdf) has to be assumed which affects the prediction of
the kth time to failure tk

f and the estimation of a RULk.
As a result, RUL prediction does not provide a single
value but a pdf. Assuming a distribution for the degra-
dation model parameters upper and lower bounds for a
RUL prediction at a time point given a required confi-
dence level can be computed.

Prediction of the time to failure clearly depends on the
failure threshold that has been set. With insufficient a pri-
ori knowledge the choice of an alarm threshold below the
EOL failure threshold ensuring a safety margin is uncer-
tain so that for a failure threshold a pdf has to be assumed.
A proper choice of an alarm threshold is crucial as the in-
tersection of an extrapolated degradation trend provides
a time instant at which a decision on the action to taken
must be made.

5.3 Advantages of the proposed approach

The proposed combined bond graph model-based, data-
based prognosis approach has the following advantages.

The computation of numerical values of an unknown
degradation function in the data acquisition phase by
evaluating an equation derived from a bicausal DBG can
be performed in parallel for multiple simultaneous para-
metric faults.

For the fitting of ‘measured’ degradated data pertain-
ing to a faulty component, the parameters of various po-
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tentially appropriate basic mathematical functions can be
computed in parallel by means of existing software. A
criterion such as the RSME can single out the best fitting
function among a set of potential candidates.

The repeated identification of a best fit degradation
model on the data of a sliding window enables to account
for possible changes of the degradation behaviour from
window to window that may be due to changes of the sys-
tem mode of operation or may be caused by changes in
the system’s environment. Extrapolating repeatedly the
time evolution of a faulty parameter from a window to
the subsequent one results in a sequences of values for
the time to failure and the RUL.

CONCLUSION

The paper contributes to the sensor placement problem
by proposing a graphical check whether potential faulty
elements can be isolated by means of a given set of sen-
sors and how their number can be increased by adding de-
tectors in appropriate places of a DBG model. The issue
of sensor placement has been addressed because para-
metric fault isolation is a prerequisite for failure prog-
nosis. Faulty sensors can be modelled as discussed in
Section 2. Parametric degradation in actuators will be
accounted for in future work.

Furthermore, it has been shown that by following
causal paths in a bicausal DBG from detectors in inverted
causality to the power port of a possibly nonlinear el-
ement with the parameter Θ(t) identified as faulty, i.e.
Θ(t)=Θn(t)+ΦΘ(t), an equation can be established that
determines the numerical values of the unknown para-
metric degradation function ΦΘ(t).

As the novel proposed computation of numerical val-
ues of unknown degradation functions is based on known
input signals and on sampled values of measured signals
and may require the differentiation of some signals in dis-
crete time, sophisticated signal processing is important.

In the data-based failure prognosis part, the parameters
of degradation models that best fit measured data have to
be considered random with a probability density function
and affects the projection into future. Uncertainties in
RUL prediction have been addressed, e.g. in Sankarara-
man and Goebel (2013) and are considered a subject of
further research.

Furthermore, there is a time delay between the occur-
rence and the detection of an incipient parametric fault.
A parameter value deviating from its nominal value must
not only touch a time dependent adaptive fault threshold
but must increasingly deviate from these adaptive bound-
aries with time in order to be identified as a progressive
fault. As a result, it takes some time until the first sliding
window can be filled with degradation data.
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