Failure prognosis of embedded systems based on temperature drift assessment

  • Oussama Djedidi  , 
  • b Mohand A. Djeziri  , 
  • c Samir Benmoussa  
  • a,bAix Marseille University, Université de Toulon, CNRS, LIS, SASV, Marseille, France
  • cLaboratoire d’Automatique et de Signaux de Annaba (LASA), University Badji Mokhtar Annaba, 23000 Algeria
Cite as
Djedidi O., Djeziri M. A., Benmoussa S. (2019). Failure prognosis of embedded systems based on temperature drift assessment. Proceedings of the 12th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2019), pp. 11-16. DOI: https://doi.org/10.46354/i3m.2019.imaaca.002

Abstract

The Systems-on-Chip provide a large capacity for calculation and monitoring, so they are increasingly integrated into risky processes such as aeronautical and power generation systems. However, embedded systems are subject to degradation caused by wear, that can be accelerated by the often hostile environment. This paper proposes a method of failure prognosis of embedded systems based on the estimation of the temperature drift under reference operating conditions, then the modelling of the drift trend using a support vector regression model. The remaining useful life is estimated using the integral of the probability density function of the time to failure. Experimental results, evaluated by performance analysis techniques, show the effectiveness of the proposed approach.

References

  1. Aggarwal N. & Ranganathan P., (2007). Configurable isolation: building high availability systems with commodity multi-core processors. In: Acm Sigarch
    . . . , vol. 35, New York, New York, USA: ACM Press, vol. 35, 470–481.
  2. Austin T.M., (1999). DIVA: A reliable substrate for deep submicron microarchitecture design. In: 32nd Annual Int. Symp. on Microarchitecture, (MICRO- 32), IEEE Comput. Soc, November, 196–207.
  3. Benmoussa S. & Djeziri M.A., (2017). Remaining useful life estimation without needing for prior knowledge of the degradation features. IET Science, Measurement & Technology, 11 (8):1071–1078. URL: https://digitallibrary. theiet.org/content/journals/10.1049/ietsmt. 2017.0005
  4. Deb S., Pattipati K.R., Raghavan V., Shakeri M., & Shrestha R., (1995). Multi-Signal Flow Graphs: A Novel Approach for System Testability Analysis and Fault Diagnosis. IEEE Aerospace and Electronic Systems Magazine, 10 (5):14–25.
  5. Djedidi O., Djeziri M.A., & M’Sirdi N.K., (2018). Data- Driven Approach for Feature Drift Detection in Embedded Electronic Devices. IFAC-PapersOnLine, 51 (24):1024–1029
  6. Djeziri M., Nguyen T.B.L., Benmoussa S., & M’Sirdi N., (2017). Fault prognosis based on physical and stochastic models. In: 2016 European Control Conference, ECC 2016, IEEE, 2269–2274.
    URL: http://ieeexplore.ieee.org/document/7810629/
  7. Feng J., Kvam P., & Tang Y., (2016). Remaining useful lifetime prediction based on the damage-marker bivariate degradation model: A case study on lithiumion batteries used in electric vehicles. Engineering Failure Analysis, 70:323–342
  8. Foutris N., Psarakis M., Gizopoulos D., Apostolakis A., Vera X., & Gonzalez A., (2010). MT-SBST: Selftest optimization in multithreaded multicore architectures. In: Proceedings - International Test Conference, IEEE, 1–10.
  9. Fung E.H., Wong Y., Ho H., & Mignolet M.P., (2003). Modelling and prediction of machining errors using ARMAX and NARMAX structures. Applied Mathematical Modelling, 27 (8):611–627.
  10. Gizopoulos D., Psarakis M., Adve S.V., Ramachandran P., Hari S.K.S., Sorin D., Meixner A., Biswas A., & Vera X., (2011). Architectures for online error detection and recovery in multicore processors. 2011 Design, Automation & Test in Europe, (c):1–6.
  11. Hong S. & Kim H., (2010). An integrated GPU power and performance model. In: ACM SIGARCH Computer Architecture News, vol. 38 of {ISCA} ’10, New York, NY, USA: ACM, vol. 38 of {ISCA} ’10, 280.
  12. LaFrieda C., Ipek E., Martínez J.F., & Manohar R., (2007). Utilizing dynamically coupled cores to
    form a resilient chip multiprocessor. In: Proceedings of the International Conference on Dependable Systems and Networks, IEEE, 317–326.
  13. Li M.L., Ramachandran P., Sahoo S.K., Adve S.V., Adve V.S., & Zhou Y., (2008). Understanding the Propagation of Hard Errors to Software and Implications for Resilient System Design. SIGOPS Oper. Syst. Rev., 42 (2):265–276.
  14. Meixner A., Bauer M.E., & Sorin D., (2007). Argus: Low-Cost, Comprehensive Error Detection in Simple Cores. In: 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), IEEE, 210–222.
  15. Mukherjee S.S., Kontz M., & Reinhardt S.K., (2002). Detailed design and evaluation of redundant multithreading alternatives. In: 29th Annual International Symposium on Computer Architecture, 2002. Proceedings, IEEE, 99–110.
  16. Nguyen T.B., Djeziri M., Ananou B., Ouladsine M., & Pinaton J., (2016). Fault prognosis for batch production based on percentile measure and gamma process: Application to semiconductor manufacturing. Journal of Process Control, 48:72–80.
  17. Racunas P., Constantinides K., Manne S., & Mukherjee S.S., (2007). Perturbation-based fault screening. In Proceedings - International Symposium on High- Performance Computer Architecture, IEEE, 169– 180.
  18. Sheppard J., (1996). Maintaining diagnostic truth with information flow models. In: Conference Record. AUTOTESTCON ’96, IEEE, 447–454.
  19. Shyam S., Constantinides K., Phadke S., Bertacco V., & Austin T., (2006). Ultra low-cost defect protection for microprocessor pipelines. In: Proceedings of th 12th international conference on Architectural support for programming languages and operating systems - ASPLOS-XII, vol. 41, New York, New York, USA: ACM Press, vol. 41, 73.
  20. Steininger A., (2000). Testing and built-in self-test – A survey. Journal of Systems Architecture,
    46 (9):721–747
  21. Wang F.W., Shi J.Y., &Wang L., (2011). Method of diagnostic tree design for system-level faults based on dependency matrix and fault tree. In: 2011 IEEE 18th International Conference on Industrial Engineering and Engineering Management, IE and EM 2011, IEEE, PART 2, 1113–1117
  22. Wang N.J. & Patel S.J., (2006). ReStore: Symptombased soft error detection in microprocessors. IEEE Transactions on Dependable and Secure Computing,
    3 (3):188–201.
  23. Zhang G., (2005). Optimum Sensor Localization/ Selection In A Diagnostic/Prognostic Architecture. Phd dissertation, University System of Georgia.