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ABSTRACT 

This paper tackles the problem of formation control for 

a group of holonomic vehicles using the Bond Graphs 

formalism. The control law design follows an energy 

based approach in which the agents are connected each 

other by means of virtual springs and dampers. The 

obtained control law is then robustified using a 

disturbance observer. The properties are studied in the 

port Hamiltonian (pH) formalism which allows to show 

that the resulting closed-loop system is �� weakly string

stable with respect to disturbances. The desired 

behavior of the closed-loop system is illustrated with 

some numerical simulation experiments. 

Keywords: Formation Control, Bond Graph, Port 

Hamiltonian System, Interconnection and Damping 

assignment, Robust Control. 

1. INTRODUCTION
The coordinated control of autonomous robots is an 

important area of research and its field of application is 

broad, encompassing problems such as Formation 

Control, sensor deployment (Tuna, Gungor and Gulez, 

2014), map generation and capture (Tuna, Gungor and 

Gulez, 2014), (Tuna, Güngör and Potirakis, 2015), 

performing search and rescue tasks of people in hazard 

environments (Ollero et al., 2007), building monitoring 

and surveillance (Feddema, Lewis and Schoenwald, 

2002), ground cleaning (Galceran and Carreras, 2013), 

lawn mowing (Yuming et al., 2011), crops 

harvesting (Ji et al., 2014), and ground mineral deposits 

detecting (Hameed, 2014), etc. 

This paper tackles the problem of Formation Control 

(FC) (Soni and Hu, 2018) for a group of holonomic 

vehicles, which are represented as point masses in the 

plane. This group of vehicles, or platoon, moves at the 

same speed maintaining a desired geometry, which is 

specified by a desired inter-vehicle space.  

A common and no desirable effect of these kind of 

systems is the accordion effect or string instability 

(Swaroop and Hedrick, 1996) (Swaroop and Hedrick, 

1999). This effect takes place when the fluctuation of 

the speed of one vehicle, caused by a variable speed of 

the leader for example or by the action of external 

disturbances acting on the vehicles, propagates through 

the network increasing the distance among the vehicles 

especially downstream. These problems were well 

treated in the literature with multiple approaches, 

depending on the sensing capabilities of each agents and 

the desired topology, to mention: the Leader-follower 

approach (Gao et al., 2018), where each agent has the 

knowledge of the position and velocity of the leader, i.e. 

the leader must broadcast its position, velocity and, 

possibly, its acceleration in a speed tracking 

configuration, to all its followers. This methodology has 

two main drawbacks which are the lack of inter-vehicle 

information feedback throughout the group which can 

cause collisions among agents and the fact that the loss 

of leader information causes a fail on the entire group. 

Another methodology that requires less demand from 

the communication network is the Predecessor-

Following approach (Knorn and Middleton, 2013) 

approach, where each agent has the knowledge of the 

relative position and velocity only of its predecessor 

agent. In (Seiler, Pant and Hedrick, 2004) the authors 

demonstrates that this configuration is always string 

unstable measuring only the relative position of the 

agents. Another approach that results as the 

combination of the previous two is the Leader-

Predecessor-Following (Xiao, Gao and Wang, 2009) 

and guaranties string stability demanding more 

requirements to the communication network or other 

approaches that uses the information of the relative 

velocity and acceleration among the agents. The 

Predecessor-Successor approach or also known as 

Bidirectional topology, in which the control law of each 

agent is defined by the information of its Predecessors-

Successors agents, i.e. the information propagates both 

upstream and downstream in the platoon. In (Barooah, 

Mehta and Hespanha, 2009) and (Seiler, Pant and 

Hedrick, 2004) it is shown that linear symmetric and 

bidirectional string measuring only the relative position 

of the agents is string unstable. The reader must refer to 

(Soni and Hu, 2018), (Zheng et al., 2016), (Middleton 

and Braslavsky, 2010), (Knorn and Middleton, 2013) 

for a sound review of these topologies and others. 

The problem of FC can be attacked using a centralized 

or a decentralized approach. The first one demands the 

use of a global communication network that allows the 

exchange of information among vehicles and the 

computation of each control law. While, in the second 

approach, each agent computes its local control law 
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using only local information, i.e. the ��� vehicle

receives information only from its neighbor vehicles. 

The main goal in this work is to solve the FC problem 

using only local information, i.e. the ��� vehicle

receives information only from its neighbor vehicles, 

rather than centralized controllers (Arcak, 2007), this 

reduces the requirements of the communication network 

to onboard sensors like radars, and the interconnection 

structure among the agents is closely related to the way 

that an agent acquires and process the information of its 

surrounding agents. To that end the desired behavior of 

the group pursued in this work, which is physically 

inspired, consists in a network of N masses coupled by 

virtual spring and dampers in parallel where the effect 

of these virtual elements is bidirectional. Different 

configurations between vehicle couplings are 

considered, from the weakly coupled configuration to 

the strongly or fully coupled. Due to direct connection 

with physics, the Bond Graph (BG) (Karnopp, Margolis 

and Rosenberg, 2006) formalism is used as a tool for 

network modeling and control law design.  

The control law design follows an energy based 

approach, of the kind of interconnection and damping 

assignment (IDA-PBC) (Ortega and García-Canseco, 

2004), completely designed in the BG domain (Junco, 

2004) where: first, the closed-loop specifications are 

expressed by a so-called Target Bond Graph (TBG) 

representing the equivalent closed-loop behavior of the 

network. Then, in order to obtain the control law, the 

controlled sources –which provide the manipulated 

variables in the BG model of the plant–  are prototyped 

(meaning that their behavior is expressed through BG 

components) in such a way that their power-

interconnection with the rest of the plant BG –which is 

called a Virtual BG (VBG)– matches the TBG. Finally, 

the control law is obtained from the VBG by simply 

reading the outputs of the prototyped sources with the 

help of the causal assignment in the VBG.  

To make the control law robust against external 

disturbances and the controlled system string stable 

with respect to input bounded disturbances, an extra 

control law based in the construction of a disturbance 

observer (DO) (Radke and Gao, 2006) is added.  

The DBG was proposed by (Samantaray et al., 2006) 

for numerical evaluation of analytical redundant 

relationships. These are calculated to perform fault 

detection and isolation in an active fault tolerant control 

framework. Here the analytical redundant relationships 

or residues obtained from a closed-loop DBG are used 

to robustify the control law. The closed-loop DBG has 

been used to robustify control law against modelling 

error, parameter dispersion and external disturbances 

that acts in the same channel as the control input in 

(Nacusse and Junco, 2011) and (Nacusse and Junco, 

2015). Recently, in (Nacusse, Donaire and Junco, 

2018), this approach was formalized and extended, for 

disturbances with relative degree greater than one, in 

the pH framework with the form of DO. 

The paper is organized as follows: Section 2 formulates 

the problem to be solved. Section 3 presents some tools 

and the metholodogy to be used. Section 4 presents the 

major result of the paper. Finally, in Section 5, some 

simulation results are provided to show the good 

performance of the control system. 

2. PROBLEM FORMULATION

In this work a group of � of holonomic vehicles

moving in a workspace � ⊂ ℝ� is considered. This

group of vehicles, or platoon, moves at the same speed 

maintaining a desired geometry which is specified by a 

desired inter-vehicle space. 

The equation of motion of each vehicle or agent is 

described by the double integrator, i.e. 
�� = �� (with� = 0, … , �), being 
�  ∈ ℝ�the position of the ��� agent

and �� = ����  ����� the control input, and represented

in the pH framework as in (1), being 
� = ���  ���� ∈ℝ� the Cartesian position of the ��� agent and �� =������  ����� ∈ ℝ� the linear momentum of the ���
point mass. 

�
������ = � 0�  �−1� 0�� �#$%#&%� + �0�1�� (�� + )�*� = #&% (1* 
Where 0� and  � are the 2�2 zero and identity matrices

respectively. %(
� , ��* = ,� ���-�.,�� is the storage

function, #$% = /%//
, #&% = /%//�, -� =)�12(�� , ��*,  )� = )3� + )4�(5* is the perturbation

input, where )� = �)��  )����, )3� = 657 and )4(5* is

bounded and variable with respect to time.  

The FC Problem can be tackled using a centralized or a 

decentralized approach. The first one demands the use 

of a global communication network that allows the 

exchange of information among vehicles and the 

computation of each control law. In the second 

approach, each agent computes its local control law 

using only local information, i.e. the ��� vehicle

receives information only from its neighbor vehicles. 

This work is framed in this last approach defining a 

physically inspired behavior of the group which consists 

in a network of N masses coupled by virtual springs and 

dampers in parallel. The connection among agents is 

bidirectional except for the leader which has its own 

control law independent of the other agents. 

Two agents that are closer than a distance 8�  are

considered neighbors and have access to relative 

information. Being 9� the number of agents inside the

neighborhood, each agent is connected to other and the 

number of coupling is indicated through a coupling 

index :� = {1,2, … 9�}, which is defined as the number

of bidirectional couplings. From the aforementioned, 

the following definitions are given. 

Definition 1: the ��� agent is said to be a Fully Coupled

Agent with distance 8�  if its coupling index is :� = 9�.
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Definition 2: the ��� agent is said to be a Partially

Coupled Agent with distance 8�  and index :� if its

coupling index is equal to  :� = 9 = 9�.
Definition 3: a network with � agents is said to be a

Fully Coupled Network with distance 8�  if all its agents

are fully coupled agents, otherwise is a Partially 

Coupled Network. 

Figure 1 shows, without loss of generality, an array of � = 25 equally-spaced agents, where the ��� agent

defines its neighborhood with a distance 8� = 1.5. The

neighborhood it is composed by eight agents, i.e. 9� = 8, which are represented, in Figure 1, as the black

dots inside the dashed circle. Notice that, if the ��� agent

is a partially coupled agent then there are several 

coupling combinations among the ��� agent and its

neighbors inside the dotted circle. 

Figure 1: Definition of the neighbourhood of the ���
agent 

The definition of string stability with respect to 

disturbances presented in (Knorn et al., 2014) will be 

used. 

Definition 4: Consider a system described by ��  = A(�, )* with states � ∈  BCD and disturbances ) ∈ B�D, A ∈  BCD   satisfying A(�∗, 0*  =  0, where �is

the number of springs. The equilibrium �∗ is �� weakly

string stable with respect to disturbances )(5*, if given

any F G  0, there exists H,(F*  G  0 and H�(F*  G  0
(independent of �) such that:

|�(0* −  �∗|  =  H,(F* and  ∥ )(. * ∥� = H�(F*  (2* 
implies 

‖�(5* − �∗‖O  =  P���QR|�(5* − �∗| = F ∀� T  1  (3* 
Where  ∥ )(. * ∥�= VW |)(5*|�)5OR
3. BACKGROUND AND METHODOLOGY

In this section the methodology used in the paper is 

detailed through a simple example consisting in two 

agents interconnected by means of physical 

components, namely a spring and a damper. 

In the sequel it is assumed that the control signal has the 

form � = �XYZ + [, where �XYZ is an IDA-PBC law

designed for the unperturbed system, i.e.  (1) with 

) = 0, and [ is an extra control input obtained from a

DO. 

The methodology employed can be summarized as 

follows: First and IDA-PBC strategy in the BG domain, 

using the virtual prototyping method (Junco, 2004), is 

employed to define the control law in absence of 

disturbance, i.e. ) = 0. Then, the closed loop system

equations in the pH framework are obtained from the 

BG domain using the methodology developed in 

(Donaire and Junco, 2009). Finally, the previous closed 

loop system is robustified using the output of a DO in 

the pH framework (Nacusse, Donaire and Junco, 2018). 

3.1. IDA-PBC in the BG domain 

The design of the control law � follows an energy based

approach completely designed in the BG domain 

(Junco, 2004) where: first, the closed-loop 

specifications are expressed by a so-called Target Bond 

Graph (TBG), see Figure 2, representing the equivalent 

closed-loop behavior of the network. Then, in order to 

obtain the control law, the controlled sources –which 

provide the manipulated variables in the BG model of 

the plant–  are prototyped (meaning that their behavior 

is expressed through BG components) in such a way 

that their power-interconnection with the rest of the 

plant BG –which is called a Virtual BG (VBG)– 

matches the TBG. Finally, the control law is obtained 

from the VBG by simply reading the outputs of the 

prototyped sources with the help of the causal 

assignment in the VBG is expressed in (4) for the ��� vehicle (an analogous law can be derived for the \��
vehicle). 

In the vector BG of Figure 2 the corresponding 

effort and flow of each bond are vectors of two 

components each. 

Figure 2: VBG of the interconnection between agents.  

�� = − ]�^_
� − 
^ − `�abcddddeddddfghig$jkl,
− m�^ _
�� − 
�^bcddeddfghg&k. ghg&l

− B�
��  (4* 
where, ]�a = )�12_:�a�,:�a�,b, m�a = )�12_o�a�,o�a�b
and `�a = �`��a  `��a�� is the natural length of the

spring and represents the desired distance to be kept 

between the two vehicles, m�a , B� and Ba are design

parameters to be chosen. Note that, besides the virtual 

spring-damper interconnection between the two 

vehicles, dissipation has been assigned to each of them 

through the elements with coefficients B�,a.
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Remark 1: notice that, the first term of (4) is associated 

with the gradient of the added potential energy due to 

the action of the spring, i.e. 
ghig$jkl = ]�a
j�a , where
j�a = _
� − 
^ − `�ab and %p_
� , 
ab = 1/2
j�a �]�a
j�a .

Without loss of generality a linear constitutive 

relationship for the spring and the damper has been 

chosen. A nonlinear constitutive relationship, 

particularly in the spring, could provide some 

advantages in the performance of the closed loop. For 

example, a nonlinear relation may augment the force 

exponentially when two vehicles are too close. 

Remark 2: notice that, if the vehicles move along a 

straight line, i.e. the workspace � ⊂ ℝ, then the vector

TBG of Figure 2 is reduced to a single bond TBG. 

3.1.1. Obtaining the pH system from the BG 

The related pH system can be obtained directly from the 

BG of Figure 2 via following the procedure detailed in 

(Donaire and Junco, 2009). In particular, in a BG model 

with all the storage elements in integral causality, as the 

one shown in Figure 2, the procedure can be 

summarized as follows: 

1. Compute the total energy of the system using the

constitutive relationships of the storage elements.

%4�a_
j�a , �� , �ab = ,� ���-�.,�� + ,� �a�-a.,�a  + ,� 
j�a� ]�a
j�a (5* 
The flow or effort variables entering to the storage 

elements are the time derivatives ��  of the states

which in this example are �� = �
� ����, while the

outputs of the storage elements are the gradient 

components of  the storage elements ∇%4�a =rs]�a_
� − 
a − `�abt�  (-�.,��*� _-a.,�ab�u� .
2. Compute the structure and dissipation matrixes v

and B using the gains of the causal paths between

the storage elements, and between the storage and

the dissipation elements, respectively.

w
j��a�����a x = y 0�  � − �− � 0� 0� � 0� 0� zcddddeddddf{
− y 0� 0� 0�0�0� B4 zcdddedddf|

#%4�a   (6*
Where B4 is the 4�4 matrix

B4 = ~−_m�a + B�b m�am�a −_m�a + Bab�
Remark 3: The stability properties of the equilibrium 

point, _�̅� , �̅a, 
j�ab = (�0,0�� , �0,0�� , �0,0��*, of the

closed loop system, defined in the TBG of Figure 2, can 

be analyzed using the energy function (5) as a 

Lyapunov function candidate and the LaSalle invariance 

principle. 

3.2. DBG and DO in the pH framework 
This section defines a closed-loop DBG from a 

behavioral BG model of the desired closed-loop. The 

output of the closed-loop DBG is a residual signal that 

indicates the discrepancy between the desired closed-

loop dynamics and real one. Then a DO is defined in the 

pH framework and its output, i.e. the control input [,  is

used next to design the outer control loop in order to 

compensate or attenuate the effect of the perturbation.  

Thus the perturbed closed-loop systems results from 

replacing � = �XYZ + [ on the plant (1), i.e. with ) ≠ 0,

and replacing (4) into (1) results in: 

w
j��a�����a x = y 0�  � − �− � � −B4 z #%4�a + y0�[�[a z + w0�)�)a x  (7* 
3.2.1. Closed-Loop DBG 
The closed-loop DBG is constructed from a behavioral 

BG model of the desired closed-loop model injecting 

the plant measurements through modulated sources. The 

residual signal is then obtained by measuring the power 

co-variables of the modulated sources, and is an 

indication of the discrepancy between the desired and 

real perturbed closed-loop dynamics. 

Figure 3: Closed-loop DBG of the interconnection 

between agents for the ��� point mass.

In Figure 3 closed-loop DBG of the interconnection 

between agents for the ��� point mass is shown where

the residual signals �Xk  and ��k  can be obtained. Notice

that, if the masses of the agents are known, then ��k =0, since the injected effort on the 0-junction is

calculated by the control input, i.e. the first term of (4), 

and 
j�a  is a state of the controller. In addition, the

residual signal �Xk  can be computed reading the effort on

the associated 0-junction as in (9*.

Thus replacing the ���  of (7) into (9* yields (10), where

the residual signal is driven by the perturbations. 

�3k(�* = #&k%4�a − #&l%4�a − 
j��a (8* 
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�Xk(�* = ��� + ]�^
j�^ + m�^_
�� − 
�^b + B�
��  (9* 
�Xk(�* =  [� + )�  (10* 
The dynamics of the DO for the disturbance is defined 

using the residual signal as follows.  

��� = ��., �Xk(�* (11* 
Where �� G 0, �� = ��� ∈  B� is a diagonal matrix. Or,

expressed in term of the desired closed-loop pH system 

replacing (9* into (11), yields (12).

��� =  ��.,���� + ]�^
j�^ + m�^_
�� − 
�^b + B�
��� (12* 
To show that �� is the disturbance estimations replace ���
from (7) in (12), with [� = −��, obtaining.

��� = −��.,z� + ��.,)�  (13* 
Then, defining the perturbation error as 74k = �� − )�,
for � = 1,2. and replacing 74k  in (13), the dynamics of74k  are.

7�4� = −��.,74� − )�� (14* 
The perturbation-error dynamics are driven by )��, the

time derivative of the perturbations. It is straightforward 

to prove that this error tends to zero exponentially for 

constant perturbations, i.e. )�� = 0, and remains

bounded if �)��� = ��. Notice that the choice of the

constant matrix �� fixes the rate of convergence of the

DO. 

Remark: the DO defined in (12) depends on the time 

derivatives of the states, i.e. ��� . In real applications

these variables cannot be always measured via sensors, 

thus it is needed to compute them with the consequent 

error due to noise in the measurements. To solve this 

problem, an internal extra variable of the DO can be 

defined, see (Mohammadi, Marquez and Tavakoli, 

2017) for further details about this procedure. In this 

example, i.e. two masses connected through the VBG of 

Figure 2 integrating (12) allows to express the control 

input [� = −�� in terms of the closed loop variable as in

(15). 

[� = −��.,-�
�� − ��.,m�a_
� − 
ab − ��.,B�
� − ��., W ]�a
j�a�R )�  (15* 
3.2.2. DO in the pH framework  

The previous ideas, elaborated above on the Bond 

Graph domain for the control of just one vehicle of the 

platoon, is extended to the whole system and 

theoretically developed in the pHs set-up, for further 

details on this approach refer to (Nacusse, Donaire and 

Junco, 2018) .  Figure 4 depicts the block diagram 

representation of the connection between the plant and 

the so-called Diagnostic pH system (D-pH), where the 

measurements injected into the D-pH block are 

identified as the gradient of the Hamiltonian or stored 

energy. 

Figure 4: Interconnection between plant and Closed-

loop D-pH System. 

Figure 5 shows an internal representation of the D-pH 

system, where it is assumed that ∇%4  is bijective, i.e.

exists ℎ4_∇%4(�*b = �. Notice that, � is the state

variable driven by the dynamics of the perturbed 

system. Where v4(�* and B4(�* are the desired

interconnection and dissipation matrices. 

Figure 5: Internal block diagram of the closed-loop D-

pH. 

The system (16) represents the closed-loop system with 

the control input � = �XYZ + [, being �XYZ the

collection of all interconnection control laws of the 

form (4).  

�
j���� = � 0� �−�� −B4� �#$j%4#&%4 � + r0 u ([ + )*� = #&% (16* 
With %4(
j, �* = ,� ��ℳ.,� + ,� 
j�]
j
Where � ∈ B�D and 
j ∈ B� are column vectors that

collect all the generalized momenta of the vehicles 

masses and the states of the springs, respectively. � is a��2� matrix with most of its elements equal to zero

and that contains only a 1 and a – 1 on each row

representing the interconnection structure between 

agents; B4 is the dissipation structure matrix, which is

assumed positive definite by design; ℳ =)�12(-,, … , -D* and  ] = )�12(],, … , ]�*.

Thus, the outputs of the D-pH are �(�* = ��$(�*, �&(�*��:

�$(�* = 
j� − �#&%4 (17* 

D-pH System
Plant

v
r(x)

d
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d
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d d

x x
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�&(�* = �� + ��#$j%4 + B4#&%4   (18* 
The same procedure described above in the BG domain 

can be applied to (18* to obtain the output of the DO.

�� = �., �&(�* (19* 
�� = −�., � + �.,) (20* 
where � = )�12(�,, … , �D* is the gain of the DO.

4. MAIN RESULT

In this section the properties of a network of �
interconnected agents, with an extra control law [
which depends on the output of the DO, are studied. 

The network of � interconnected agents is represented

by the system (16) where each agent can be coupled to 

more than one neighbor depending on the network 

configuration.  

Proposition: 

System (16) with the disturbance estimation z (19) and 

control input (20) has the following properties: 

[ = −� − s,Ct ���#&%4  (21* 
1- It can be expressed as a pH system as: 

y
j�����z = �v3 − B3�#� + � )  (22* 

With v3 = � 0 � 0−�� 0 − 12 �0 12 �� 0 � , B3 = �0 0 00 B)∗ 12 �0 12 ��  � , 
B4∗ =  B4 + s,Ct ��� , � = �0  �.,��and �(�, 
j, �* = %4(�, 
j* + ,� ���.,�: where the 0 and   are the zero and identity matrices with appropriate dimensions. 

2- If the disturbance ) is constant, that is )(5* =)3 and )4(5* = 0, then the equilibrium (�∗, 
j∗, �∗* =(0,0, )3* of the closed loop is  asymptotically stable

with Lyapunov function (23): 

�� = %4(�, 
j* + ,� (� − )3*��.,(� − )3* (23* 
3- The closed loop system (22) is �� weakly string

stable with respect to the dynamic disturbances )(5*.

Notice that the term (1/4*���#&%4 in (21) is a

damping that always can be injected. Proof: 
1- To prove the first claim consider �(�, 
j, �* =%4(�, 
j* + ,� ���.,�, then writing the dynamics of the

states ��, 
j� and substituting the input by the control law

(21), yields the  closed loop dynamics (24): 

y
j�����z = y 0 � 0−�� −B4∗ −�0 0 − z w#$j%4#&%4�.,�x + y 01−�.,z )  (24* 
Finally decompose the matrix that multiplies ∇� in (24)

into its symmetric and skew-symmetric component to 

obtain the dynamics (22). 

2- To prove that (�∗, 
j∗, �∗* = (0, 0, )3* is an

asymptotically stable equilibrium point of the system 

define �� as in (23), then the closed loop system can be

expressed as: 

y
j�����z = �v3 − B3�#��  (25* 
Use �� as a candidate Lyapunov function, and compute

its time derivative, which result as follows  

Q� � =  ∇Q�¬ y
j�����z  (26* 

Q� � =  ∇Q�¬ y 0 S 0−S¬ −B4∗ −G0 0 − z ∇Q�  (27* 

Q� � =  −∇Q�¬ �0 0 00 B4∗ ,� G0 ,� GT  � ∇Q�  (28* 

Q� � = � ∇°H²G.,(� − )3*�� y B4∗ 12 G12 ��  zcddeddf|³∗
� ∇°H²G.,(� − )3*�  (29*

Applying Schur’s complements in B3∗ G 0 ⟺ R²∗ G 0
which implies that ��� ≤ 0. Thus, the equilibrium point

is asymptotically stable via the application of the La 

Salle Invariance Principle, which ensures that the 

trajectories of the state converge to the largest invariant 

set (Khalil, 2002).  
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3- The procedure used to prove Theorem 4 in 

(Knorn et al., 2014) it is used here to prove this claim.  

Using %4(�, 
j* as candidate of Lyapunov function and

following the procedure of the proof of the claim 2, then 

the derivative of %4(�, 
j* along the trajectories can be

written as: 

H� ² ≤ −∇H²¬ �0 0 00 B4∗ ,� G0 ,� GT  � ∇H² + ∇H²¬)4  (30* 

H� ² ≤ −·� y B4∗ ,� GT
,� ��  z · + ·�H4  (31* 

where · = �#&%4 �.,� � and H4 =  r  �.,u )4 then:

H� ² ≤  −¸��¹(B4∗ *|·|� + ·�H4 (32* 
H� ² ≤  − ,� ¸��¹(B4∗ *|·|� + ,�º»k¼_|½∗ b |H4|� (33* 
H� ² ≤  ,�º»k¼_|½∗ b |H4|� (34* 
Then, integrating both terms of (34) along time: 

H²(5* ≤ H²(0* + ,�º»k¼_|½∗ b ‖δ²‖�� (35* 
Replacing %4(0* and operating yields

%4(5* ≤ ,� ¸��¹(-.,*|�(0*| + ,� ¸��¹(]*|
j(0*|+ ,� ¸��¹(�.,*|�(0*| + ,� º»k¼_|½∗ b ‖H4‖��
(36* 

Which means that H²(�, qj, �, 5* is bounded for all

agents if |�(0*|, |
j(0*|, |�(0*|, and ‖H4‖� do not

increase with number of agents �. As %4(�, 
, �, 5* is

monotically increasing, then an upper bound of H²(�, qj, �, 5* implies that the states (�, 
j, �* are also

bounded. Therefore, the system is �� weakly string

stable with respect to the dynamic disturbances )4(5*.

5. APPLICATION EXAMPLES
This section presents some simulations results to show 

the performance of the control laws obtained above in 

two different configurations among agents. First a 

partially coupled network is studied, see Figure 6a, in 

which each agent has coupling index : = 2, i.e. each

agent is connected to only two other agents, and then a 

fully coupled network, see Figure 6b, configuration in 

which the agents are connected to all the  surrounding 

agents with distance 8� ≤ 2.

Figure 6: Interconnection and distance, in meters, 

among agents. a) partially coupled network with 

coupling index : = 2. b) fully coupled network.

Figure 6 shows the desired triangle formation where the 

black dots represent the agents and the connections 

among them are represented by lines. The dashed lines 

represent the unidirectional coupling of agent 1 and 

agent 2 with the leader, while the solid lines represent 

the bi-directional coupling among agents, i.e. in the BG 

domain these lines are represented with the VBG shown 

in Figure 2. 

The simulations were performed using 20sim 

environment (20Sim, 2013) and the scenario is as 

follows: at time 5 = 0P76 the agents are gathered at the

origin and then they move to the desired triangle 

formation. At time 5 = 8P76 the leader moves 1 meter

in the Y direction. Finally, at time 5 = 20P76 a

disturbance, which is a logarithmic sine sweep of the 

form,  )(5* = 50 sin(¿(5*5* (see 20Sim reference

manual for further details), affects the agent 2 as 

indicated in Figure 6. 

The parameters used in the simulations are: �� = 1]2,

for � = 0 5À 9, m� = 0  �]2/P76, m�a = 10 �]2/P76,]�a = 10 �]2/P76�, `�a =  �� and �� = 100 �, where � is the 2�2 identity matrix.

In Figure 7 the position of the leader, the disturbance 

affecting the mass 2 and the disturbance error are 

depicted for both configurations. Notice that the 

disturbance error can be reduced even more by 

increasing the value of ��.
Figure 8 and Figure 9 show the distance between the 

leader and each agent for the partially coupled network 

and the fully coupled network configuration 

respectively, with and without the action of the DO. The 

distance between the leader and each agent, defined in 

the desired formation configuration of Figure 6, is 8�P5_�� = |
R − 
�| for � = 0 5À 9. As can be seen in

Figure 8a and Figure 9a for time 5 = 20 P76 and in

Figure 8b and Figure 9b the 8�P5_�� of each agent

reaches the desired distance. Notice, the improvement 

due to the application of the control input [ in Figure 8b

and Figure 9b for time 5 G 20 P76.
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Figure 7: From top to bottom: Cartesian position XY of 

the leader; Cartesian disturbance XY acting on ��;

Cartesian disturbance errror XY obtained from the DO. 

Figure 8: Distance, in meters, between the leader and 

each agent. a) without DO compensator, b) with DO 

compensator. 

Figure 9: Distance, in meters, between the leader and 

each agent. a) without DO compensator, b) with DO 

compensator. 

6. CONCLUSIONS

This work tackles the problem of formation control for 

a group of holonomic vehicles using the Bond Graphs 

formalism. The control laws for the agents are 

physically inspired and designed in the BG domain. 

Later these control laws are robustified by adding an 

extra control action based in a DO definition. The main 

properties of the resulting closed-loop are: constant 

disturbance rejection and �� weakly string stable with

respect to disturbances.  
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APPENDIX 
The perturbed TBG for partially coupled network and 

the fully coupled network interconnection are shown in 

Figure 10 and Figure 11, where the interconnection 

between the 1-junctions in done through the VBG of 

Figure 2. The matrixes � and B of the system (16), are

not deduced here due to space constraint, but these can 

be computed following the procedure detailed in 

Section 3.1.1. 
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Figure 10: Perturbed TBG of 10 agents in triangle 

formation for partially coupled network of Figure 6a. 

 
Figure 11: Perturbed TBG of 10 agents in triangle 

formation for partially coupled network of Figure 6b. 
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