Full modelling and sliding mode control for a quadrotor UAV in visual servoing task

  • Choukri Bensalah  , 
  • b Nacer K. M’Sirdi  , 
  • c Aziz Naamane 
  • aLaboratoire d’Automatique de Tlemcen (LAT), University of Tlemcen, Algeria
  • b,cAix Marseille University, Université de Toulon, CNRS, LIS UMR 7020, SASV, Marseille, France
Cite as
Bensalah C., M’Sirdi N. K., Naamane A. (2019). Full modelling and sliding mode control for a quadrotor UAV in visual servoing task. Proceedings of the 12th International Conference on Integrated Modeling and Analysis in Applied Control and Automation (IMAACA 2019), pp. 48-57. DOI: https://doi.org/10.46354/i3m.2019.imaaca.007

Abstract

In this paper the Control of an UAV is designed by an Image Based Visual Servoing (IBVS). The trajectories are generated by the IBVS to track a target. The dynamic model describing the Quadrotor behaviour is established taking into account all internal and external aerodynamic forces and moments, for simulation. Furthermore, actuators and sensors dynamics are also considered. To overcome all the nonlinearities, as well as the strong coupling in 3D position and Euler angles of Quadrotor system, a robust Sliding Mode Control (SMC) is designed. Unlike several literature works in this topic, the SMC control uses only an approximated model of the Quadrotor. In other words, SMC does not use the dynamic inversion of Quadrotor model. The Quadrotor is endowed a virtual camera to perform visual tracking, in order to evaluate the robustness of our controller.

References

  1. R. Austin. Unmanned Aircraft Systems: UAVs design, development and deployment. 1st edition, John Wiley and Sons Ltd, London, 2010
  2. S. Azrad, F. Kendoul, and K. Nonami. Visual servoing of quadrotor micro-air vehicle using color-based tracking lgorithm. J. Syst. Des. Dyn., 4(2), 2010.
  3. Y Zhang B. Wang, L. Mu. Adaptive robust tracking control of quadrotor helicopter with parametric uncertainty and external disturbance. In International Conference on Unmanned Aircraft Systems (ICUAS), 2017.
  4. M. Becker, B. Coronel, R. Sampaio, S. Bouabdallah, V. De Perrot, and R. Siegwart. In flight collision avoidance for a mini-uav robot based on onboard sensors. J. of the Brazilian Society of Mechanical Sciences and Engineering, 34(3):294–307, 2012.
  5. S. Bouabdallah. Design and control of quadrotors with application to autonomous flying. PhD thesis, École Polytechnique fédérale de Lausanne, 2007.
  6. H.L. Chan and K.T. Woo. Design and control of small quadcopter system with motor closed loop speed control. International Journal of Mechanical Engineering and Robotics Research, 4(3), 2015.
  7. F. Chaumette and S. Hutchinson. Visual servo control part i: basic approaches. IEEE Robot. Autom. Mag, 13 (4), 2006.
  8. C. Cosmin and J. B. Macnab. A new robust adaptivefuzzy control method addaplied to quadrotor helicopter stabilization. In Fuzzy Information Processing Society, Annual Meeting of the North American, NAFIPS, pages 454–458, 2006.
  9. A. Das, F. Lewis, and S. Subbarao. Dynamic neural network based robust backstepping control approach for quadrotors. In Proc. of the AIAA Guidance, Navigation and Control Conference and Exibit , Hawaii, USA, 2008.
  10. A. Das, K. Subbarao, and F. Lewis. Dynamic inversion with zero-dynamics stabilisation for quadrotor control. IET Control Theory Application, 3(3):303–314, 2009.
  11. S.V. Emelyanov. Theory of variable-structure control systems: inception and initial development. Computational Mathematics and Modeling, 18(4), 2007.
  12. V. Grabe, H.H. Bulthoff, and P.R. Giordano. A comparison of scale estimation schemes for a quadrotor uav based on optical flow and imu measurements. In IEEE - RSJ Int. Conf. on Intelligent Robots and Systems, IROS, 2013.
  13. A. Guerrero and R. Lozano. Flight formation control. John Wiley and Sons Inc, New York, 2012.
  14. T. Hamel and R. Mahony. Visual servoing of an underactuated dynamic rigid-body system: an image-based approach. IEEE Trans. Robot. Autom, 18(2), 2006.
  15. B. Herisse, T. Hamel, R. Mahony, and F.X. Russotto. Landing a vtol unmanned aerial vehicle on a moving platform using optical flow. IEEE Trans. Robot, 28(1), 2012.
  16. S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial on visual servo control. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 12(5), 1996.
  17. S. Islam, P. X. Liu, and A. El Saddik. Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty. IEEE Transactions on Industrial Electronics, 62(3):1563–1571, March 2015. ISSN 0278-0046. doi: 10.1109/TIE.2014.2365441.
  18. R. Lozano. Unmanned aerial vehicles: Embedded control. John Wiley and sons, 2013.
  19. R. Mahony, P. Corke, and T. Hamel. Dynamic imagebased visual servo control using centroid and optic flow features. J. Dyn.Syst-T. ASME, 130, 2017.
  20. N. Manamanni, M. Djemai, T. Boukhobza, and N.K. M’Sirdi. Nonlinear sliding observer based control for a pneumatic robot leg. International Journal of Robotics and Automation, 16:100–112, 01 2001.
  21. L. Mederreg, F. Diaz, and N.K. M’Sirdi. Nonlinear backstepping control with observer design for 4 rotors helicopter. In Proceedings of AVCS 2004, Genova, 2004.
  22. L. Mederreg, F. Diaz, and N.K. M’Sirdi. Dynamic feedback control for a quadrotor unmanned aerial vehicle. In SSD 2005, Sousse, Tunisia, 2005.
  23. V. Mistler, A. Benallegue, and N.K. M’Sirdi. Exact linearizatio and noninteracting control of a 4-rotors helicopte via dynamic feedback. In ROMAN 10th IEEE Int. Workshop on Robot-Human Interactive Communication, Bordeaux, pages 586–593, Bordeaux and Paris, 2001. ISBN 0-7803-7222-0. doi: 10.1109/ROMAN. 2001.981968
  24. V. Mistler, A. Benallegue, and N.K. M’Sirdi. Linéarisation exacte et découplage entrées-sorties, comparaison entre l’hélicoptère standard et l’hélicoptère 4 rotors. In Proceedings of the CIFA 2002, Nantes, 2002.
  25. A. Mokhtari, N.K. M’Sirdi, K. Meghriche, and A Belaidi. Feedback linearization and linear observer for a quadrotor unmanned aerial vehicle. Advanced Robotics, 20(1):71–91, 2006. doi: DOI:10.1163/ 156855306775275495. URL https://doi.org/10. 1163/156855306775275495
  26. N.K M’Sirdi and N. Nadjar-Gauthier. Application of Sliding Mode Control to Robotic Systems, chapter 13, pages 351–387. Control Engineering Series. Marcel Dekker edited by Wilfrid Perruquetti and Jean Pierre Barbot, New York, 2002. URL https://books. google.fr/books?isbn=0203910850.
  27. N.K. M’Sirdi, P. Fraisse, P. Dauchez, and N. Manamani. Sliding mode control for a hydraulic underwater manipulator. In Syroco’97, 1997.
  28. A. Rabhi, M. Chadli, and C. Pegard. Robust fuzzy control for stabilization of a quadrotor. In International Conference on Advanced Robotics, pages 471–475, 2011.
  29. G.V. Raffo, M. G Ortega, and F. R. Rubio. Nonlinear hinfinity controller for the quad-rotor helicopter with input coupling*. IFAC Proceedings Volumes, 44 (1):13834 – 13839, 2011. ISSN 1474-6670. doi: https://doi.org/10.3182/20110828-6-IT-1002.02453. URL http://www.sciencedirect.com/science/ article/pii/S1474667016458477. 18th IFAC
    World Congress.
  30. C. Samson and B. Espiau. Application of the task-function approach to sensor-based control of
    robot manipulators. IFAC Proceedings Volumes, 23 (8, Part 5):269 – 274, 1990. ISSN 1474-6670.
    doi: https://doi.org/10.1016/S1474-6670(17)51746-2. UR tp://www.sciencedirect.com/science/ article/pii/S1474667017517462. 11th IFAC
    World Congress on Automatic Control, Tallinn, 1990 - Volume 5, Tallinn, Finland.