
 

 

  

ABSTRACT 
Based on the solution of a linear-quadratic differential 
game with a terminal attacker's constraint, obtained in 
the previous paper, the practically important case of 
first-order players' dynamics is treated. The game space 
decomposition is constructed. The fulfillment of the 
saddle point inequalities is demonstrated. The feedback 
realization of the optimal strategies is presented. 

Keywords: pursuit-evasion differential game, zero-sum 
linear-quadratic game, terminal constraint, first-order 
dynamics 

1. INTRODUCTION
A defender-attacker-target problem is a widely 
discussed topic in the control and guidance literature 
(see e.g., (Rubinsky and Gutman 2014; Garcia, Casbeer, 
and Pachter 2017) and others).  In the previous paper of 
the authors (Turetsky and Glizer 2019), one can find a 
detailed literature review on different approaches for the 
modeling and solution of this problem.  
In (Turetsky and Glizer 2019), a linear-quadratic 
differential game with an attacker’s terminal constraint 
was considered.  It was assumed that the player’s 
controllers are described by linear differential equations 
of an arbitrary order.  In this game, the objective of the 
defender (pursuer) is to capture the attacker (evader), 
i.e.  to nullify the miss distance (the  closest  separation 
between  the  vehicles),  while the  evader  tries  to  
avoid  the  capture.   However, in a practical situation, 
avoiding the capture is not the main aim of the evader. 
Its  actual  aim  is  to  hit  a prescribed  static  object 
(target),  while  avoiding  the capture  is  an  auxiliary  
aim  (see,  e.g., (Lipman and Shinar 1995) and  
references therein).  Since the evader tries not only to 
escape the pursuer, but also to hit the target, it should be 
able to reach the target after the interception moment.  
This is described by a terminal state inequality 
constraint. 
The general solution of the corresponding linear- 
quadratic differential game with the terminal evader’s 
constraint was obtained in the previous paper of the 
authors (Turetsky and Glizer 2019).   It  was  shown  
that  subject  to  a  condition  on  the  evader’s  penalty  
coefficient  in  the  cost functional, the game space is 
decomposed into three non-intersecting regions of 
different saddle point solutions. 

In the literature, different types of missiles’ dynamics 
can be found. The zero-order evader’s dynamics 
(“ideal” evader) is traditionally interpreted as a worst 
case for the pursuer.   The special case, where the 
controller dynamics of both the pursuer and the evader 
is zero-order, was considered in (Rubinsky and Gutman 
2014; Glizer and Turetsky 2015). In (Lipman and 
Shinar 1995), the evader is ideal, whereas the pursuer 
has the first-order dynamics. However, real life 
controllers cannot transfer the control command into the 
missile acceleration instantaneously. Therefore, the 
zero-order dynamics model has rather theoretic 
implementation.   In this paper, the special case where 
both players have first-order dynamics is elaborated. 
The  first-order  dynamics  of  the  players  models  an 
intrinsic controller property: a time  lag between  the  
control command  and the  lateral  acceleration.   Thus,  
this  case  represents  a  realistic  model  of  missiles 
engagement  as emphasized by Shinar (1981),  which  
makes it  very  important  from  the  practical  point  of 
view. The first-order approximation of the pursuer’s and 
the evader’s dynamics was exploited in numerous 
papers on vehicles guidance and control (see, e.g., 
(Shinar 1981; Shinar, Glizer, and Turetsky 2013) and 
references therein). 

2. PREVIOUS RESULTS
In this section, the results of Turetsky and Glizer 
(2019) on the solution of the game with arbitrary order 
of the players’ controllers are briefly outlined. 

2.1. Original Pursuit-Evasion Game 
The engagement between the defender (pursuer) and the 
attacker (evader) is considered.   In Fig. 1, the schematic 
engagement geometry is depicted.  The X - axis is the 
initial line of sight.  The Y -axis is normal to the X -
axis.  The origin of the coordinate system is collocated 
with the target position, which is also the initial position 
of the pursuer.   The points  ( , )p px y  and  ( , )e ex y   
are current coordinates of the pursuer and the evader, 
respectively; pV , eV   are their velocities; pa , ea   are 

their lateral accelerations; p , e  are the respective 

angles between the velocity vectors and the X -axis. 
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Figure 1: Interception Geometry 

The controller dynamics of the pursuer and the evader 
are described by the equations  

1= , (0) = [0] , = , ,i i i i i i ni
x A x b u x i p e    (1) 

= , = , ,T
i i i i ia c x d u i p e        (2) 

 where ix  is the state vector consisting of in  internal 

variables, iu  is the scalar control, = ,i p e ; pa  and 

ea  are the lateral accelerations of the pursuer and the 

evader, respectively,  [0]k m  denotes a zero ( )k m -

matrix. In the equations (1) – (2), iA  is a given constant 

matrix, ib  and ic are given constant vectors, id  is a
given scalar. 
The system dynamics for [0, ]ft t  is described by the 
linear differential equations of motion of the pursuer 
and the evader:  

= , = ,i i i i iX A X Bu i p e   (3) 

where the state vector is = [ , , ]T T
i i i iX y y x , 
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The initial condition is  
 1(0) = [0, (0), 0 ] , = , .T

i i i ni
X V i p e


       (6) 

The objective of the pursuer is to minimize the cost 
functional  

2 2 2

0 0

= ( ( ) ( )) ( ) ( ) ,
t tf f

e f p f p eJ y t y t u t dt u t dt          (7)

where , > 0   are penalties for the players’ controls. 
The evader’s first objective is to maximize (7). The 
second objective is to be capable to reach the target at 

= f ct t t , i.e. to satisfy the constraint 
max| ( , ) ( ) | ,e e f c f e f e eD t t t X t a        (8) 

 where c ft t , /p eV V  ,

 1 ( 1)
= 1, 0 ,e ne

D
 

 
  

      (9) 

 ( , ) ,
t tf c

e e e f c e

t f

D t t t B dt


       (10) 

( , )e t   is the transition matrix of the homogeneous 
system, corresponding to (3) for =i e . 
For [ , ]f f ct t t t  , it is assumed that  

max| ( ) | .e eu t a       (11) 

The pursuit-evasion differential game for the system (3) 
with the cost functional (7) and the evader’s terminal 
constraint (8) is called the Original Pursuit-Evasion 
Game (OPEG). 

2.2. Reduced Game 
The relative motion between the evader and the pursuer 
in the direction normal to the initial line-of-sight (the 
Y axis direction) is described by the system 

= ,ep ep ep ep p ep eX A X B u C u         (12) 

 where = [ , , , ]T T T
ep e p e p p eX y y y y x x   ,  
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Let  1 ( 1)
= 1, 0ep n np e

D
  

 
  

, ( , )ep ft t  be the 

transition matrix of the homogeneous system, 
corresponding to (12).  New scalar state variables 

( ) = ( , ) ( ),ep ep f epz t D t t X t       (13) 
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( ) = ( , ) ( ),e e f c ew t D t t t X t   (14) 

 satisfy the differential equations  

0= ( ) ( ) , (0) = ,p p e ez h t u h t u z z        (15) 

 0= ( ) , (0) = ,e ew g t u w w   (16) 

 where 
( ) = ( , ) ,
( ) = ( , ) ,

p ep ep f ep

e ep ep f ep

h t D t t B

h t D t t C




  (17) 

( ) = ( , ) ,e e e f c eg t D t t t B        (18) 
0 0 0

0 0= ( ), = ( ) .f e e p p f c e ez t V V w t t V          (19) 

Note that ( ) = ( ) ( )f e f p fz t y t y t , and the cost 
functional (7) can be rewritten as  

2 2 2

0 0

=| ( ) | ( ) ( ) .
t tf f

f p eJ z t u t dt u t dt          (20) 

 Due to (14), the constraint (8) becomes 

max| ( ) |f e ew t a .       (21) 
Thus, the OPEG is reduced to the pursuit-evasion 
differential game for the system (15) – (16) with the 
cost functional (20) and the terminal evader’s constrain 
(21). This game is called the Reduced Pursuit-Evasion 
Game (RPEG). 

2.3. Saddle Points in Reduced Game 
In this section, we obtain the pairs of strategies 

* *( ( ), ( ))p eu u  , constituting the saddle point in the 
Reduced Game, i.e., satisfying for all admissible 
strategies ( )pu  , ( )eu   the saddle point inequality  

* * * *( ( ), ( )) ( ( ), ( )) ( ( ), ( )).p e p e p eJ u u J u u J u u        (22) 
 Let us define the values 

2 2

0 0

1 1= 1 ( ) ( ) > 0,
t tf f

p es h t dt h t dt
 

    (23) 

 
0

1 ( ) ( ) .
t f

e ea h t g t dt
s

   (24) 

 2

0

1 ( ) ,
t f

p ph t dt


    (25) 

 2
2 3

0 0

1 1= ( ) ( ) , = ( ) ,
t tf f

e e eG h t g t dt G g t dt
        (26) 

 
2
2

2
1 3 2

= ,
(( ) )

p

p

G
d

G s G G


 

   

(27) 
 the matrix  

2

2 3

(0)
,

s G

G

G G

 
   
  

       (28) 

 the vectors  

0 0
max max

0 0

= , = ,
.e e e e

z z
b b

w a w a 
    

       
  (29) 

1= ( , ) = ,T
f f fz v G b            (30) 

 1= ( , ) =T
f f fz v G b     ,    (31) 

 and the sets 
max

0 0 0 0= {( , ) : | |< },e ez w w az a         (32) 

max
0 0 0 0= {( , ) : },e ez w w az d a         (33) 

max
0 0 0 0= {( , ) : }.e ez w w az d a       (34) 

In what follows, we assume that the condition  

2

0

> ( )
t f

eh t dt    (35) 

holds.  
Remark 1. Subject to the condition (35), 

max
0 0 0 0= {( , ) : },e ez w w az a      (36) 

max
0 0 0 0= {( , ) : }.e ez w w az a         (37) 

In this case, the planar sets  ,   and   do not 
intersect each other, and     coincides 
with the entire 0 0( , )z w -plane. 
The saddle point solutions of Reduced Game are 
defined separately for the cases 0 0( , )z w  , 

0 0( , )z w   and 0 0( , )z w  . 
Theorem 1.  If the condition (35) holds and 

0 0( , )z w  , the pair  

00 0 0( ) ( )( ) = , ( ) = ,p e
p e

h t z h t z
u t u t

s s 
        (38) 

 is an open-loop saddle point in the Reduced Game. 
Remark 2.  If 0 0( , )z w  , then, the solution ( )w t  

generated by 
*( )eu   in (38), satisfies the inequality (21) 

strictly, i.e., max| ( ) |<f e ew t a . 
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Theorem 2. Let (35) hold and 0 0( , )z w  . Then,

the pair  
1( ) = ( ) ,

1( ) = ( ) ( )

p p f

e e f e f

u t h t z

u t h t z g t v





 

  



  

 (39) 

 is an open-loop saddle point in the Reduced Game. 
Remark 3.  If 0 0( , )z w  , then the optimal 

trajectory ( ( ), ( ))z t w t  generated by the pair 

( ( ), ( ))p eu u    satisfies the terminal conditions 

max( ) = , ( ) = ,f f f e ez t z w t a   (40) 
i.e., the terminal condition (21) is satisfied as an 
equality with the sign " ".  
Theorem 3. Let (35) hold and 0 0( , )z w  . Then, 

the pair 
1( ) = ( ) ,

1( ) = ( ) ( )

p p f

e e f e f

u t h t z

u t h t z g t v





 

  



  

 (41) 

 is an open-loop saddle point in the Reduced Game. 
Remark 4.  If 0 0( , )z w  , then, the optimal 

trajectory ( ( ), ( ))z t w t  generated by the pair 

( ( ), ( ))p eu u    satisfies the terminal conditions 

max( ) = , ( ) = ,f f f e ez t z w t a          (42) 
 i.e., the terminal condition (21) is satisfied as an 
equality with the sign " ".  

3. SPECIAL CASE: FIRST-ORDER PURSUER
AGAINST FIRST-ORDER EVADER

In this section, the theory of the previous section is 
applied to the particular case of (1) – (2) which is of a 
practical interest. This example illustrates some 
important features of the game solution. 

3.1. Original Pursuit-Evasion Game 
If both the pursuer and the evader have the first-order 
dynamics controller, then in the system (1) – (2), 

=1pn , = 1/p pA  , = 1/p pb  , = 0pd , 

=1en , = 1/e eA  , = 1/e eb  , = 0ed , where p
and e  are the time constants of the pursuer’s and the 
evader’s controllers. The pursuer’s and the evader’s 
controls are the lateral acceleration commands. 
In the OPEG, the controlled system is given by (3), 
where = ( , , , , , ) ,T

p p p e e ex y y a y y a 

0 1 0 0 0 0
0 0 1 0 0 0
0 0 1/ 0 0 0

= ,
0 0 0 0 1 0
0 0 0 0 0 1
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  
  
  
    

 

The cost functional (7) becomes 

2 2 2
4 1

0 0

= ( ( ) ( )) ( ) ( ) .
t tf f

f f p eJ x t x t u t dt u t dt      

The matrix e  is  

( , ) =e f ct t t 

21 (( ) / )
0 1 [exp( ( ) / ) 1] ,
0 0 exp( ( ) / )

f c e f c e

e f c e

f c e

t t t t t t

t t t

t t t

  
 



     
     
    

 

where ( ) exp( ) 1 0.t t t       
Thus, the terminal inequality constraint (8) becomes  

2 max
4 5 6| ( ) ( ) ( / ) ( ) | ,f c f e c e f e ex t t x t t x t a     

where 

= (( ) / ) =
t tf c

e e f c e

t f

t t t dt   


 
2 2(1 / 2 exp( )), / .e c et                 (43) 

3.2. Reduced Game 
The scalar variables (13) and (14) become  

2 2

( ) = ( )( )

(( ) / ) (( ) / ) ,
e p f e p

p f p p e f e e

z t y y t t y y

t t a t t a     

    

  

 

2

( ) = ( )

(( ) / ) .
e f c e

e f c e e

w t y t t t y

t t t a  

   

 



The coefficient functions (17) in the differential 
equations (15) – (16) become  
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( ) = (( ) / ),
( ) = (( ) / ),

p p f p

e e f e

h t t t

h t t t

  

  

 


   (44) 

( ) = (( ) / ).e e f c eg t t t t                          (45) 

The differential equations (15) – (16) become  
= (( ) / )

(( ) / ) ,
p f p p

e f e e

z t t u

t t u

  

  

  




 (46) 

 = (( ) / ) .e f c e ew t t t u                            (47) 
The Reduced Game (RG) is formulated for the system 
(46) – (47) with the cost functional (20) and the 
terminal inequality constraint (21) where e  is given 
by (43). 

3.3. Saddle Point Solutions 
In this case, the solvability condition (35) reads  

* 2 2

0

> = (( ) / ) .
t f

e f et t dt          (48) 

In Fig. 2, the game space decomposition into the sets 
 ,   and   is shown for =1ft  s, = 0.9 , 

max =100ea  m/s 2 , = 0.05 , = 0.3 , = 0.2p  

s, = 0.1e  s. For these parameters, * = 0.2438 ,
and the solvability condition (48) is valid. 

Figure 2: Game space decomposition 

3.3.1. Solution for 0 0( , )z w   

In this case, the optimal controls (38) are calculated by 
substituting ( )ph t  and ( )eh t  from (44) into the value 

of s . The solvability condition (35) yields > 0s . 

Figure  3: Solution for 0 0( , )z w   

In this example, the terminal constraint (21) is 
| ( ) | 32.5fw t  . In Fig. 3, two optimal w -trajectories 
are shown for different initial conditions. If the game 
starts from 0 0( = 100, = 50)z w   , then 

( ) = 4.895fw t  m satisfies the terminal inequality 
constraint (the trajectory is shown by the solid line). If 
the initial position is 0 0( = 100, = 100)z w   , 

( ) = 45.105fw t   m and the terminal constraint is 
violated (dashed-line trajectory). The straight lines 

max= = 32.5e ew a   m depict the boundaries of the 
evader’s constraint. 

3.3.2. Solution for 0 0( , )z w   

We continue using the same parameters as in the 
previous subsection. In this example, = 0.92a , 

max = 32.5e ea , the matrix (28) is 

3.72 2.04
= .

2.04 5.91
G

 
  
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For 0 0( , ) = ( 100, 20)z w    ,  

100 23.56
= , = = .

12.5 6.02
f

f
f

z
b
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In Figs. 4 – 5, the optimal trajectories, generated by the 
saddle-point pairs ( ( ), ( ))p eu u    and ( ( ), ( ))p eu u   , 

are shown ( ( )z t  and ( )w t  in Figs. 4 and 5, 
respectively). It is seen that under the controls 
( ( ), ( ))p eu u   , ( ) = = 21.22f fz t z  m and 

max( ) = = 32.5f e ew t a  m, i.e., the terminal equality 
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conditions (40) are satisfied. Correspondingly, under 
the controls ( ( ), ( ))p eu u   , ( ) = = 23.56f fz t z   m 

and max( ) = = 32.5f e ew t a   m, i.e., the terminal 
equality conditions (42) are satisfied. 

Figure  4: Optimal z -trajectories 

  Figure  5: Optimal w -trajectories 
The optimal controls ( )pu t  and ( )eu t  are depicted in 
Figs. 5 and 6, respectively. 

  Figure  6: Optimal controls ( )pu t

Figure  7: Optimal controls ( )eu t  

Due to Theorem 2, the pair ( ( ), ( ))p eu u    given by 
(39) constitutes the saddle point in the Reduced Game if 
and only if 0 0 0 0( , ) = { 0.92 32.5}z w w z    
(see Fig. 2). Similarly, for 

0 0 0 0( , ) = { 0.92 32.5}z w w z     (see Fig. 
2), the saddle point in the Reduced Game is 
( ( ), ( ))p eu u    given by (39). 

Table  1: Results for 0 0( , )z w   

 0 0( , )z w   0 0( , )z w 

   Controls  Result    Controls Result
( ( ), ( ))p eu u   1939.2   ( ( ), ( ))p eu u      2488.2 

( ( ), ( ))p eu u   418.8   ( ( ), ( ))p eu u    1463.1  

( ( ), ( ))p eu u      2347.7 ( ( ), ( ))p eu u       2836.7 

Let us chose the initial position 

0 0( , ) = (100,50)z w   and calculate the cost 
functional (20) for three pairs of control functions: for 
( ( ), ( ))p eu u   , for ( ( ), ( ))p eu u    and for 

( ( ), ( ))p eu u   . For 0 0( , ) = ( 100, 20)z w   

we calculate (20) for ( ( ), ( ))p eu u   , for 

( ( ), ( ))p eu u    and for ( ( ), ( ))p eu u   . The results are 

presented in Table 1. It is seen that for 0 0( , )z w  , 

the saddle point inequality (22) with ( ) = ( )p pu u  , 

( ) = ( )e eu u   is satisfied for ( ( ), ( ))p eu u   . For 

0 0( , )z w  , the saddle point inequality (22) with 

( ) = ( )p pu u  , ( ) = ( )e eu u   is satisfied for 

( ( ), ( ))p eu u   . 

3.3.3. Feedback realizations of optimal strategies 
The complete solution of the Original Game in the class 
of feedback strategies is the topic of the future research. 
However, in this paper, we propose the following 
feedback realization of the saddle point strategies (38), 
(39) and (41). This realization is based on implementing 
the open-loop strategy where a current position 
( , ( ), ( ))t z t w t  is used instead of the initial position 

0 0(0, , )z w . The idea of constructing a feedback 
control based on an open-loop strategy is well known in 
the control literature (see e.g.,  (Gabasov, Gaishun, 
Kirillova, and Prishchepova 1992)).  
For 0 0( , )z w  , the feedback realization of (38) is  
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0 0( ) ( )( , ) = , ( , ) = ,
( ) ( )

p e
p e

h t z h t z
u t z u t z

s t s t 
  (49) 

 where 

2 21 1( ) = 1 ( ) ( ) .
t tf f

p e

t t

s t h t dt h t dt
 

    (50) 

 In order to construct the feedback realization for 

0 0( , )z w  , let us define the matrix  

2

2 3

( ) ( )
( ) ,

( ) ( )

s t G t

G t

G t G t

 
   
  

 (51) 

 where 

2
1( ) = ( ) ( ) ,

t f

e e

t

G t h t g t dt
 

2
3

1( ) = ( ) ,
t f

e

t

G t g t dt
   (52) 

 and the vectors  

max( , ) = ,
e e

z
b z w

w a
  

  

max( , ) = ,
.e e

z
b z w

w a
  

  
 (53) 

( , , ) =f t z w

1( ( , , ), ( , , )) = ( ) ( , ),T
f fz t z w v t z w G t b z w         (54) 

 ( , , ) =f t z w

1( ( , , ), ( , , )) = ( ) ( , ).T
f fz t z w v t z w G t b z w         (55) 

 Then, for 0 0( , )z w   and 0 0( , )z w  , (39) 
and (41) become  

1( , , ) = ( ) ( , , ),p p fu t z w h t z t z w


 

( , , )) =
1 ( ) ( , , ) ( ) ( , , ) ,

e

e f e f

u t z w

h t z t z w g t v t z w




   
  (56) 

 and 
1( , , ) = ( ) ( , , ),p p fu t z w h t z t z w


 

( , , )) =
1 ( ) ( , , ) ( ) ( , , ) ,

e

e f e f

u t z w

h t z t z w g t v t z w




   
  (57) 

respectively. 
We remind that in this paper, we do not present a strict 
theoretical justification of feedback solutions (49), (56) 
and (57). 

Figure  8: Trajectories  generated by (57) 

In Fig. 8, the trajectories ( )z t  and ( )w t  generated 

from the position 0 0( , ) ( 100, 20)z w      by 
the feedback strategies (57), are depicted for the same 
parameters as in the previous section. These trajectories 
are close to those generated by the saddle point open-
loop strategies (see Figs. 4 and 5). The terminal values 
are ( ) 23.484m 23.56mf fz t z     ,   

max( ) 32.5mf ew t a    . 
Now, we examine the behavior of the feedback 
strategies in the case of noisy state measurements. At 
each step it  of the numerical solution, the true values 

( )i iz z t  and ( )i iw w t  are replaced by 

i i ziz z   and i i wiw w   , where 

[ , ]zi z zU  � and [ , ]wi w wU  �  are the 
uniformly distributed measurement errors for z  and w  
respectively. Two cases are distinguished: (I) both the 
pursuer and the evader obtain the noised state 
information, and (II) the pursuer obtains the noise 
information, whereas the evader uses accurate 
measurements. Let us denote ( )Iz t , ( )IIz t  and 

( )Iw t , ( )IIw t  the trajectories ( )z t and ( )w t   in the 
cases (I) and (II), respectively. In Fig. 9, the differences 

( ) ( ) ( )z
I It z t z t    and ( ) ( ) ( )z

II IIt z t z t  

are shown for 50z w    m. In this simulation,

( ) 23.56I fz t    m, ( ) 24.46II fz t   m, yielding 

( ) 0.46z
I ft  m, ( ) 0.98z

II ft  m. Thus, the
terminal error is larger in the case where the evader has 
an information advantage. 
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Figure  9: Differences ( )z
I t and ( )z

II t

In Fig. 10, the differences ( ) ( ) ( )w
I It w t w t    and 

( ) ( ) ( )w
II IIt w t w t    are shown. It is seen that in 

the case (I) the difference is large, whereas in the case 
(II), the difference is close to zero. In this simulation, 

( ) 28.21I fw t    m, ( ) 32.5II fw t   m, yielding 

( ) 4.285w
I ft  m, ( ) 0w

II ft  m. 

Figure  10: Differences ( )w
I t and ( )w

II t

4. CONCLUSIONS
The practically important special case of a linear-
quadratic differential game with a terminal inequality 
constraint was considered. This game models a pursuit 
of an evader with two objectives: (i) maximizing the 
cost functional, and (ii) hitting a stationary target. In 
this case, both the pursuer and the evader have first-
order controller dynamics. The case was treated based 
on the results presented in the previous paper of the 
authors and outlined briefly in this paper. In the special 
case,   

 the solvability condition was established;
 the game space decomposition into three non-

intersecting sets was constructed;
 the saddle point game solutions were

derived; 
 the fulfilment of the saddle point

inequality was demonstrated; 

 the feedback realization of the saddle point
open-loop strategies was presented and
simulated with state measurement errors.
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